IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v24y2012i3d10.1007_s10878-011-9393-3.html
   My bibliography  Save this article

The complexity of influence maximization problem in the deterministic linear threshold model

Author

Listed:
  • Zaixin Lu

    (University of Texas at Dallas)

  • Wei Zhang

    (Xi’an JiaoTong University)

  • Weili Wu

    (University of Texas at Dallas)

  • Joonmo Kim

    (Dankook University)

  • Bin Fu

    (University of Texas–Pan American)

Abstract

The influence maximization is an important problem in the field of social network. Informally it is to select few people to be activated in a social network such that their aggregated influence can make as many as possible people active. Kempe et al. gave a $(1-{1 \over e})$ -approximation algorithm for this problem in the linear threshold model and the independent cascade model. In addition, Chen et al. proved that the exact computation of the influence given a seed set is #P-hard in the linear threshold model. Both of the two models are based on randomized propagation, however such information might be obtained by surveys and data mining techniques. This will make great difference on the complexity of the problem. In this note, we study the complexity of the influence maximization problem in deterministic linear threshold model. We show that in the deterministic linear threshold model, there is no n 1−ε -factor polynomial time approximation for the problem unless P=NP. We also show that the exact computation of the influence given a seed set can be solved in polynomial time.

Suggested Citation

  • Zaixin Lu & Wei Zhang & Weili Wu & Joonmo Kim & Bin Fu, 2012. "The complexity of influence maximization problem in the deterministic linear threshold model," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 374-378, October.
  • Handle: RePEc:spr:jcomop:v:24:y:2012:i:3:d:10.1007_s10878-011-9393-3
    DOI: 10.1007/s10878-011-9393-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-011-9393-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-011-9393-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaodong Liu & Xiangke Liao & Shanshan Li & Si Zheng & Bin Lin & Jingying Zhang & Lisong Shao & Chenlin Huang & Liquan Xiao, 2017. "On the Shoulders of Giants: Incremental Influence Maximization in Evolving Social Networks," Complexity, Hindawi, vol. 2017, pages 1-14, September.
    2. Hemant Gehlot & Shreyas Sundaram & Satish V. Ukkusuri, 2023. "Algorithms for influence maximization in socio-physical networks," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-28, January.
    3. Xiao, Yunpeng & Wang, Zheng & Li, Qian & Li, Tun, 2019. "Dynamic model of information diffusion based on multidimensional complex network space and social game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 578-590.
    4. Eszter Julianna Csókás & Tamás Vinkó, 2023. "An exact method for influence maximization based on deterministic linear threshold model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 269-286, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:24:y:2012:i:3:d:10.1007_s10878-011-9393-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.