IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v22y2011i2d10.1007_s10878-010-9288-8.html
   My bibliography  Save this article

Sharp bounds for Zagreb indices of maximal outerplanar graphs

Author

Listed:
  • Ailin Hou

    (Central China Normal University)

  • Shuchao Li

    (Central China Normal University)

  • Lanzhen Song

    (University of Mississippi University)

  • Bing Wei

    (University of Mississippi University)

Abstract

For a (molecular) graph, the first Zagreb index M 1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M 2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we investigate the first and the second Zagreb indices of maximal outerplanar graph. We determine sharp upper and lower bounds for M 1-, M 2-values among the n-vertex maximal outerplanar graphs. As well we determine sharp upper and lower bounds of Zagreb indices for n-vertex outerplanar graphs (resp. maximal outerplanar graphs) with perfect matchings.

Suggested Citation

  • Ailin Hou & Shuchao Li & Lanzhen Song & Bing Wei, 2011. "Sharp bounds for Zagreb indices of maximal outerplanar graphs," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 252-269, August.
  • Handle: RePEc:spr:jcomop:v:22:y:2011:i:2:d:10.1007_s10878-010-9288-8
    DOI: 10.1007/s10878-010-9288-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-010-9288-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-010-9288-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuchao Li & Licheng Zhang & Minjie Zhang, 2019. "On the extremal cacti of given parameters with respect to the difference of zagreb indices," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 421-442, August.
    2. John Estes & Bing Wei, 2014. "Sharp bounds of the Zagreb indices of k-trees," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 271-291, February.
    3. Shuchao Li & Huihui Zhang & Minjie Zhang, 2016. "Further results on the reciprocal degree distance of graphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 648-668, February.
    4. Lifang Zhao & Hongshuai Li & Yuping Gao, 2020. "On the extremal graphs with respect to the total reciprocal edge-eccentricity," Journal of Combinatorial Optimization, Springer, vol. 39(1), pages 115-137, January.
    5. Lkhagva Buyantogtokh & Batmend Horoldagva & Kinkar Chandra Das, 2020. "On reduced second Zagreb index," Journal of Combinatorial Optimization, Springer, vol. 39(3), pages 776-791, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:22:y:2011:i:2:d:10.1007_s10878-010-9288-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.