IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v22y2011i1d10.1007_s10878-009-9271-4.html
   My bibliography  Save this article

Robust multi-sensor scheduling for multi-site surveillance

Author

Listed:
  • Nikita Boyko

    (University of Florida)

  • Timofey Turko

    (University of Florida)

  • Vladimir Boginski

    (University of Florida REEF)

  • David E. Jeffcoat

    (Air Force Research Laboratory)

  • Stanislav Uryasev

    (University of Florida)

  • Grigoriy Zrazhevsky

    (University of Florida)

  • Panos M. Pardalos

    (University of Florida)

Abstract

This paper presents mathematical programming techniques for solving a class of multi-sensor scheduling problems. Robust optimization problems are formulated for both deterministic and stochastic cases using linear 0–1 programming techniques. Equivalent formulations are developed in terms of cardinality constraints. We conducted numerical case studies and analyzed the performance of optimization solvers on the considered problem instances.

Suggested Citation

  • Nikita Boyko & Timofey Turko & Vladimir Boginski & David E. Jeffcoat & Stanislav Uryasev & Grigoriy Zrazhevsky & Panos M. Pardalos, 2011. "Robust multi-sensor scheduling for multi-site surveillance," Journal of Combinatorial Optimization, Springer, vol. 22(1), pages 35-51, July.
  • Handle: RePEc:spr:jcomop:v:22:y:2011:i:1:d:10.1007_s10878-009-9271-4
    DOI: 10.1007/s10878-009-9271-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9271-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9271-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
    2. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
    2. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    3. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
    4. Meihua Wang & Chengxian Xu & Fengmin Xu & Hongang Xue, 2012. "A mixed 0–1 LP for index tracking problem with CVaR risk constraints," Annals of Operations Research, Springer, vol. 196(1), pages 591-609, July.
    5. Nasini, Stefano & Labbé, Martine & Brotcorne, Luce, 2022. "Multi-market portfolio optimization with conditional value at risk," European Journal of Operational Research, Elsevier, vol. 300(1), pages 350-365.
    6. Krastyu Georgiev & Young Kim & Stoyan Stoyanov, 2015. "Periodic portfolio revision with transaction costs," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 337-359, June.
    7. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    8. David Bergman & Andre A. Cire, 2018. "Discrete Nonlinear Optimization by State-Space Decompositions," Management Science, INFORMS, vol. 64(10), pages 4700-4720, October.
    9. E. Birgin & L. Bueno & N. Krejić & J. Martínez, 2011. "Low order-value approach for solving VaR-constrained optimization problems," Journal of Global Optimization, Springer, vol. 51(4), pages 715-742, December.
    10. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    11. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    12. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    13. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    14. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    15. Gupta, Pankaj & Mittal, Garima & Mehlawat, Mukesh Kumar, 2013. "Expected value multiobjective portfolio rebalancing model with fuzzy parameters," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 190-203.
    16. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    17. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    18. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    19. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    20. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:22:y:2011:i:1:d:10.1007_s10878-009-9271-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.