IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v20y2010i4d10.1007_s10878-009-9214-0.html
   My bibliography  Save this article

Semi-online scheduling with known maximum job size on two uniform machines

Author

Listed:
  • Qian Cao

    (East China University of Science and Technology)

  • Zhaohui Liu

    (East China University of Science and Technology)

Abstract

In this paper, we investigate the semi-online scheduling problem with known maximum job size on two uniform machines with the speed ratio s≥1. The objective is to minimize the makespan. Two algorithms are presented, where the first is optimal for $1\leq s\leq\sqrt{2}$ , and the second is optimal for 1.559≤s≤2 and $s\ge \frac{3+\sqrt{17}}{2}$ . In addition, the improvement on lower bounds is made for $2

Suggested Citation

  • Qian Cao & Zhaohui Liu, 2010. "Semi-online scheduling with known maximum job size on two uniform machines," Journal of Combinatorial Optimization, Springer, vol. 20(4), pages 369-384, November.
  • Handle: RePEc:spr:jcomop:v:20:y:2010:i:4:d:10.1007_s10878-009-9214-0
    DOI: 10.1007/s10878-009-9214-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9214-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9214-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Mireault & James B. Orlin & Rakesh V. Vohra, 1997. "A Parametric Worst Case Analysis of the LPT Heuristic for Two Uniform Machines," Operations Research, INFORMS, vol. 45(1), pages 116-125, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koulamas, Christos & Kyparisis, George J., 2009. "A modified LPT algorithm for the two uniform parallel machine makespan minimization problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 61-68, July.
    2. Liao, Ching-Jong & Lin, Chien-Hung, 2003. "Makespan minimization for two uniform parallel machines," International Journal of Production Economics, Elsevier, vol. 84(2), pages 205-213, May.
    3. Alan J. Soper & Vitaly A. Strusevich, 2021. "Parametric analysis of the quality of single preemption schedules on three uniform parallel machines," Annals of Operations Research, Springer, vol. 298(1), pages 469-495, March.
    4. Christos Koulamas & George J. Kyparisis, 2006. "A heuristic for maximizing the number of on‐time jobs on two uniform parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(6), pages 568-575, September.
    5. Ivar Massabò & Giuseppe Paletta & Alex J. Ruiz-Torres, 2016. "A note on longest processing time algorithms for the two uniform parallel machine makespan minimization problem," Journal of Scheduling, Springer, vol. 19(2), pages 207-211, April.
    6. Federico Della Croce & Rosario Scatamacchia, 2020. "The Longest Processing Time rule for identical parallel machines revisited," Journal of Scheduling, Springer, vol. 23(2), pages 163-176, April.
    7. Federico Della Croce & Rosario Scatamacchia & Vincent T’kindt, 2019. "A tight linear time $$\frac{13}{12}$$ 13 12 -approximation algorithm for the $$P2 || C_{\max }$$ P 2 | | C max problem," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 608-617, August.
    8. Leah Epstein, 2018. "A survey on makespan minimization in semi-online environments," Journal of Scheduling, Springer, vol. 21(3), pages 269-284, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:20:y:2010:i:4:d:10.1007_s10878-009-9214-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.