IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v19y2010i3d10.1007_s10878-009-9208-y.html
   My bibliography  Save this article

A fast exact algorithm for the problem of optimum cooperation and the structure of its solutions

Author

Listed:
  • Diana Fanghänel

    (Universität zu Köln)

  • Frauke Liers

    (Universität zu Köln)

Abstract

Given a graph G=(V,E) with edge weights w e ∈ℝ, the optimum cooperation problem consists in determining a partition of the graph that maximizes the sum of weights of the edges with nodes in the same class plus the number of the classes of the partition. The problem is also known in the literature as the optimum attack problem in networks. Furthermore, a relevant physics application exists. In this work, we present a fast exact algorithm for the optimum cooperation problem. Algorithms known in the literature require |V|−1 minimum cut computations in a corresponding network. By theoretical considerations and appropriately designed heuristics, we considerably reduce the numbers of minimum cut computations that are necessary in practice. We show the effectiveness of our method by presenting results on instances coming from the physics application. Furthermore, we analyze the structure of the optimal solutions.

Suggested Citation

  • Diana Fanghänel & Frauke Liers, 2010. "A fast exact algorithm for the problem of optimum cooperation and the structure of its solutions," Journal of Combinatorial Optimization, Springer, vol. 19(3), pages 369-393, April.
  • Handle: RePEc:spr:jcomop:v:19:y:2010:i:3:d:10.1007_s10878-009-9208-y
    DOI: 10.1007/s10878-009-9208-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-009-9208-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-009-9208-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mourad Baïou & Francisco Barahona & Ali Ridha Mahjoub, 2000. "Separation of Partition Inequalities," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 243-254, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Fanghänel, 2013. "A bilevel programming problem with maximization of a supermodular function in the lower level," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 568-584, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:19:y:2010:i:3:d:10.1007_s10878-009-9208-y. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.