IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v19y2010i2d10.1007_s10878-008-9165-x.html
   My bibliography  Save this article

Adjacent vertex distinguishing total colorings of outerplanar graphs

Author

Listed:
  • Yiqiao Wang

    (Zhejiang Normal University)

  • Weifan Wang

    (Zhejiang Normal University)

Abstract

An adjacent vertex distinguishing total coloring of a graph G is a proper total coloring of G such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing total coloring of G is denoted by χ″ a (G). In this paper, we characterize completely the adjacent vertex distinguishing total chromatic number of outerplanar graphs.

Suggested Citation

  • Yiqiao Wang & Weifan Wang, 2010. "Adjacent vertex distinguishing total colorings of outerplanar graphs," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 123-133, February.
  • Handle: RePEc:spr:jcomop:v:19:y:2010:i:2:d:10.1007_s10878-008-9165-x
    DOI: 10.1007/s10878-008-9165-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-008-9165-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-008-9165-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulin Chang & Qiancheng Ouyang & Guanghui Wang, 2019. "Adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least 10," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 185-196, July.
    2. Tong Li & Cunquan Qu & Guanghui Wang & Xiaowei Yu, 2017. "Neighbor product distinguishing total colorings," Journal of Combinatorial Optimization, Springer, vol. 33(1), pages 237-253, January.
    3. Weifan Wang & Jingjing Huo & Danjun Huang & Yiqiao Wang, 2019. "Planar graphs with $$\Delta =9$$Δ=9 are neighbor-distinguishing totally 12-colorable," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 1071-1089, April.
    4. Lin Sun & Xiaohan Cheng & Jianliang Wu, 2017. "The adjacent vertex distinguishing total coloring of planar graphs without adjacent 4-cycles," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 779-790, February.
    5. Xiaohan Cheng & Jianliang Wu, 2018. "The adjacent vertex distinguishing total choosability of planar graphs with maximum degree at least eleven," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 1-13, January.
    6. Zengtai Gong & Chen Zhang, 2023. "Adjacent Vertex Distinguishing Coloring of Fuzzy Graphs," Mathematics, MDPI, vol. 11(10), pages 1-25, May.
    7. Renyu Xu & Jianliang Wu & Jin Xu, 2016. "Neighbor sum distinguishing total coloring of graphs embedded in surfaces of nonnegative Euler characteristic," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1430-1442, May.
    8. Weifan Wang & Danjun Huang, 2014. "The adjacent vertex distinguishing total coloring of planar graphs," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 379-396, February.
    9. Hualong Li & Laihao Ding & Bingqiang Liu & Guanghui Wang, 2015. "Neighbor sum distinguishing total colorings of planar graphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 675-688, October.
    10. Xiaohan Cheng & Guanghui Wang & Jianliang Wu, 2017. "The adjacent vertex distinguishing total chromatic numbers of planar graphs with $$\Delta =10$$ Δ = 10," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 383-397, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:19:y:2010:i:2:d:10.1007_s10878-008-9165-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.