IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v15y2008i1d10.1007_s10878-007-9087-z.html
   My bibliography  Save this article

Improved adaptive group testing algorithms with applications to multiple access channels and dead sensor diagnosis

Author

Listed:
  • Michael T. Goodrich

    (University of California)

  • Daniel S. Hirschberg

    (University of California)

Abstract

We study group-testing algorithms for resolving broadcast conflicts on a multiple access channel (MAC) and for identifying the dead sensors in a mobile ad hoc wireless network. In group-testing algorithms, we are asked to identify all the defective items in a set of items when we can test arbitrary subsets of items. In the standard group-testing problem, the result of a test is binary—the tested subset either contains defective items or not. In the more generalized versions we study in this paper, the result of each test is non-binary. For example, it may indicate whether the number of defective items contained in the tested subset is zero, one, or at least two. We give adaptive algorithms that are provably more efficient than previous group testing algorithms. We also show how our algorithms can be applied to solve conflict resolution on a MAC and dead sensor diagnosis. Dead sensor diagnosis poses an interesting challenge compared to MAC resolution, because dead sensors are not locally detectable, nor are they themselves active participants.

Suggested Citation

  • Michael T. Goodrich & Daniel S. Hirschberg, 2008. "Improved adaptive group testing algorithms with applications to multiple access channels and dead sensor diagnosis," Journal of Combinatorial Optimization, Springer, vol. 15(1), pages 95-121, January.
  • Handle: RePEc:spr:jcomop:v:15:y:2008:i:1:d:10.1007_s10878-007-9087-z
    DOI: 10.1007/s10878-007-9087-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-007-9087-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-007-9087-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongxi Cheng & Ding-Zhu Du & Feifeng Zheng, 2015. "A new strongly competitive group testing algorithm with small sequentiality," Annals of Operations Research, Springer, vol. 229(1), pages 265-286, June.
    2. Yongxi Cheng & Ding-Zhu Du & Yinfeng Xu, 2014. "A Zig-Zag Approach for Competitive Group Testing," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 677-689, November.
    3. Yongxi Cheng & Jue Guo & Feifeng Zheng, 2015. "A new randomized algorithm for group testing with unknown number of defective items," Journal of Combinatorial Optimization, Springer, vol. 30(1), pages 150-159, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:15:y:2008:i:1:d:10.1007_s10878-007-9087-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.