IDEAS home Printed from https://ideas.repec.org/a/spr/jbecon/v88y2018i7d10.1007_s11573-018-0894-8.html
   My bibliography  Save this article

Multi-item single-source ordering with detailed consideration of transportation capacities

Author

Listed:
  • Martin Grunewald

    (Technische Universität Braunschweig)

  • Thomas Volling

    (Technische Universität Berlin)

  • Christoph Müller

    (Technische Universität Braunschweig)

  • Thomas S. Spengler

    (Technische Universität Braunschweig)

Abstract

We consider multi-item single-source ordering with detailed consideration of transportation capacities. Such problems are characteristic for companies which operate direct links as part of their supply chain to transport loads with heterogeneous physical dimensions and fluctuating demands. Given knowledge on transportation demands, companies can eliminate future transports by shifting the load to fill the inflexible capacity of prior transports. While reducing transportation costs, doing so will ceteris paribus imply inventory. The problem is to coordinate orders across multiple items such that transport costs are minimized at minimal increase in inventory. The approach is distinct from prior works in that it considers detailed loading restrictions. We therefore interpret the problem as a multi-period version of the container loading problem. A wall building approach is used and incorporated into a heuristic rolling horizon procedure. We test the proposed procedure on some random problems which resemble a real inbound case from the automotive industry. As compared to period-by-period planning and two benchmarks with aggregated capacity models from the literature and practice, cost savings are possible under a wide range of operating conditions and mostly independent of the shipping volume. The largest potential exists for mid- to long-distance transports. There is a relevant potential to improve short-distance transports as well, however, only if inventory cost rates are moderate.

Suggested Citation

  • Martin Grunewald & Thomas Volling & Christoph Müller & Thomas S. Spengler, 2018. "Multi-item single-source ordering with detailed consideration of transportation capacities," Journal of Business Economics, Springer, vol. 88(7), pages 971-1007, September.
  • Handle: RePEc:spr:jbecon:v:88:y:2018:i:7:d:10.1007_s11573-018-0894-8
    DOI: 10.1007/s11573-018-0894-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11573-018-0894-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11573-018-0894-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    2. Khouja, Moutaz & Goyal, Suresh, 2008. "A review of the joint replenishment problem literature: 1989-2005," European Journal of Operational Research, Elsevier, vol. 186(1), pages 1-16, April.
    3. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    4. Kelly Poldi & Silvio Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    5. Goyal, Suresh K. & Gupta, Yash P., 1989. "Integrated inventory models: The buyer-vendor coordination," European Journal of Operational Research, Elsevier, vol. 41(3), pages 261-269, August.
    6. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 79443, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Gramani, Maria Cristina N. & Franca, Paulo M., 2006. "The combined cutting stock and lot-sizing problem in industrial processes," European Journal of Operational Research, Elsevier, vol. 174(1), pages 509-521, October.
    8. Kelly Cristina Poldi & Silvio Alexandre Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    9. Fandel, Gunter & Reese, Joachim, 1991. "Just-in-Time logistics of a supplier in the car manufacturing industry," International Journal of Production Economics, Elsevier, vol. 24(1-2), pages 55-64, November.
    10. Meyr, H., 2004. "Supply chain planning in the German automotive industry," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 36062, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Van Eijs, M. J. G., 1994. "Multi-item inventory systems with joint ordering and transportation decisions," International Journal of Production Economics, Elsevier, vol. 35(1-3), pages 285-292, June.
    12. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    13. Sancak, Emre & Salman, F. Sibel, 2011. "Multi-item dynamic lot-sizing with delayed transportation policy," International Journal of Production Economics, Elsevier, vol. 131(2), pages 595-603, June.
    14. Sônia Poltroniere & Kelly Poldi & Franklina Toledo & Marcos Arenales, 2008. "A coupling cutting stock-lot sizing problem in the paper industry," Annals of Operations Research, Springer, vol. 157(1), pages 91-104, January.
    15. Shoshana Anily & Michal Tzur, 2005. "Shipping Multiple Items by Capacitated Vehicles: An Optimal Dynamic Programming Approach," Transportation Science, INFORMS, vol. 39(2), pages 233-248, May.
    16. Stein, Bärbel & Voith, Christian, 2008. "Modell zur Losgrößenoptimierung am Beispiel der Blechteilindustrie für Automobilzulieferer," Weidener Diskussionspapiere 11, University of Applied Sciences Amberg-Weiden (OTH).
    17. Nejib Ben-Khedher & Candace A. Yano, 1994. "The Multi-Item Joint Replenishment Problem with Transportation and Container Effects," Transportation Science, INFORMS, vol. 28(1), pages 37-54, February.
    18. Shoshana Anily & Michal Tzur, 2006. "Algorithms for the multi‐item multi‐vehicles dynamic lot sizing problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(2), pages 157-169, March.
    19. Ali, Agha Iqbal & O'Connor, Debra J., 2013. "Using truck-inventory-cost to obtain solutions to multi-period logistics models," International Journal of Production Economics, Elsevier, vol. 143(1), pages 144-150.
    20. Alonso, M.T. & Alvarez-Valdes, R. & Iori, M. & Parreño, F. & Tamarit, J.M., 2017. "Mathematical models for multicontainer loading problems," Omega, Elsevier, vol. 66(PA), pages 106-117.
    21. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice Marchi & Lucio Enrico Zavanella & Simone Zanoni, 2020. "Joint economic lot size models with warehouse financing and financial contracts for hedging stocks under different coordination policies," Journal of Business Economics, Springer, vol. 90(8), pages 1147-1169, September.
    2. Kurpel, Deidson Vitorio & Scarpin, Cassius Tadeu & Pécora Junior, José Eduardo & Schenekemberg, Cleder Marcos & Coelho, Leandro C., 2020. "The exact solutions of several types of container loading problems," European Journal of Operational Research, Elsevier, vol. 284(1), pages 87-107.
    3. Tamssaouet, Karim & Engebrethsen, Erna & Dauzère-Pérès, Stéphane, 2023. "Multi-item dynamic lot sizing with multiple transportation modes and item fragmentation," International Journal of Production Economics, Elsevier, vol. 265(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amanda O. C. Ayres & Betania S. C. Campello & Washington A. Oliveira & Carla T. L. S. Ghidini, 2021. "A Bi-Integrated Model for coupling lot-sizing and cutting-stock problems," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1047-1076, December.
    2. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    3. Anselmo Ramalho Pitombeira-Neto & Bruno de Athayde Prata, 2020. "A matheuristic algorithm for the one-dimensional cutting stock and scheduling problem with heterogeneous orders," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 178-192, April.
    4. Quetschlich, Mathias & Moetz, André & Otto, Boris, 2021. "Optimisation model for multi-item multi-echelon supply chains with nested multi-level products," European Journal of Operational Research, Elsevier, vol. 290(1), pages 144-158.
    5. Baller, Annelieke C. & Dabia, Said & Dullaert, Wout E.H. & Vigo, Daniele, 2019. "The Dynamic-Demand Joint Replenishment Problem with Approximated Transportation Costs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1013-1033.
    6. Sancak, Emre & Salman, F. Sibel, 2011. "Multi-item dynamic lot-sizing with delayed transportation policy," International Journal of Production Economics, Elsevier, vol. 131(2), pages 595-603, June.
    7. Alonso, M.T. & Martinez-Sykora, A. & Alvarez-Valdes, R. & Parreño, F., 2022. "The pallet-loading vehicle routing problem with stability constraints," European Journal of Operational Research, Elsevier, vol. 302(3), pages 860-873.
    8. Pedro Rochavetz Lara Andrade & Silvio Alexandre Araujo & Adriana Cristina Cherri & Felipe Kesrouani Lemos, 2023. "The cutting stock problem applied to the hardening process in an automotive spring factory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(2), pages 637-664, June.
    9. D. N. Nascimento & S. A. Araujo & A. C. Cherri, 2022. "Integrated lot-sizing and one-dimensional cutting stock problem with usable leftovers," Annals of Operations Research, Springer, vol. 316(2), pages 785-803, September.
    10. Engebrethsen, Erna & Dauzère-Pérès, Stéphane, 2019. "Transportation mode selection in inventory models: A literature review," European Journal of Operational Research, Elsevier, vol. 279(1), pages 1-25.
    11. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    12. Gislaine Mara Melega & Silvio Alexandre de Araujo & Reinaldo Morabito, 2020. "Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems," Annals of Operations Research, Springer, vol. 295(2), pages 695-736, December.
    13. Padilla Tinoco, Silvia Valeria & Creemers, Stefan & Boute, Robert N., 2017. "Collaborative shipping under different cost-sharing agreements," European Journal of Operational Research, Elsevier, vol. 263(3), pages 827-837.
    14. Timo Gschwind & Stefan Irnich & Simon Emde & Christian Tilk, 2018. "Branch-Cut-and-Price for the Scheduling Deliveries with Time Windows in a Direct Shipping Network," Working Papers 1805, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    15. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    16. Novas, Juan M. & Ramello, Juan Ignacio & Rodríguez, María Analía, 2020. "Generalized disjunctive programming models for the truck loading problem: A case study from the non-alcoholic beverages industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    17. Meyer, Anne & Amberg, Boris, 2018. "Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 147-169.
    18. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    19. Simon Emde, 2017. "Scheduling the replenishment of just-in-time supermarkets in assembly plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 321-345, January.
    20. Masood Fathi & Victoria Rodríguez & Dalila B.M.M. Fontes & Maria Jesus Alvarez, 2016. "A modified particle swarm optimisation algorithm to solve the part feeding problem at assembly lines," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 878-893, February.

    More about this item

    Keywords

    Joint ordering; Multi-item dynamic lot-sizing; Direct links; Container loading; Automotive industry;
    All these keywords.

    JEL classification:

    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jbecon:v:88:y:2018:i:7:d:10.1007_s11573-018-0894-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.