IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i1d10.1007_s13253-024-00602-4.html
   My bibliography  Save this article

Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study

Author

Listed:
  • Arnab Hazra

    (Indian Institute of Technology Kanpur)

  • Pratik Nag

    (King Abdullah University of Science and Technology (KAUST))

  • Rishikesh Yadav

    (HEC Montreal)

  • Ying Sun

    (King Abdullah University of Science and Technology (KAUST))

Abstract

Increasingly large and complex spatial datasets pose massive inferential challenges due to high computational and storage costs. Our study is motivated by the KAUST Competition on Large Spatial Datasets 2023, which tasked participants with estimating spatial covariance-related parameters and predicting values at testing sites, along with uncertainty estimates. We compared various statistical and deep learning approaches through cross-validation and ultimately selected the Vecchia approximation technique for model fitting. To overcome the constraints in the R package GpGp, which lacked support for fitting zero-mean Gaussian processes and direct uncertainty estimation—two things that are necessary for the competition, we developed additional R functions. Besides, we implemented certain subsampling-based approximations and parametric smoothing for skewed sampling distributions of the estimators. Our team DesiBoys secured the first position in two out of four sub-competitions and the second position in the other two, validating the effectiveness of our proposed strategies. Moreover, we extended our evaluation to a large real spatial satellite-derived dataset on total precipitable water, where we compared the predictive performances of different models using multiple diagnostics.

Suggested Citation

  • Arnab Hazra & Pratik Nag & Rishikesh Yadav & Ying Sun, 2025. "Exploring the Efficacy of Statistical and Deep Learning Methods for Large Spatial Datasets: A Case Study," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 231-254, March.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-024-00602-4
    DOI: 10.1007/s13253-024-00602-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00602-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00602-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-024-00602-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.