IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i1d10.1007_s13253-023-00595-6.html
   My bibliography  Save this article

Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models

Author

Listed:
  • Jeffrey W. Doser

    (Michigan State University
    Michigan State University)

  • Andrew O. Finley

    (Michigan State University
    Michigan State University
    Michigan State University)

  • Sarah P. Saunders

    (National Audubon Society)

  • Marc Kéry

    (Swiss Ornithological Institute)

  • Aaron S. Weed

    (National Park Service)

  • Elise F. Zipkin

    (Michigan State University
    Michigan State University)

Abstract

Occupancy models are frequently used by ecologists to quantify spatial variation in species distributions while accounting for observational biases in the collection of detection-nondetection data. However, the common assumption that a single set of regression coefficients can adequately explain species-environment relationships is often unrealistic, especially across large spatial domains. Here we develop single-species (i.e., univariate) and multi-species (i.e., multivariate) spatially-varying coefficient (SVC) occupancy models to account for spatially-varying species-environment relationships. We employ Nearest Neighbor Gaussian Processes and Pólya-Gamma data augmentation in a hierarchical Bayesian framework to yield computationally-efficient Gibbs samplers, which we implement in the spOccupancy R package. For multi-species models, we use spatial factor dimension reduction to efficiently model datasets with large numbers of species (e.g., $$> 10$$ > 10 ). The hierarchical Bayesian framework readily enables generation of posterior predictive maps of the SVCs, with fully propagated uncertainty. We apply our SVC models to quantify spatial variability in the relationships between maximum breeding season temperature and occurrence probability of 21 grassland bird species across the USA. Jointly modeling species generally outperformed single-species models, which all revealed substantial spatial variability in species occurrence relationships with maximum temperatures. Our models are particularly relevant for quantifying species-environment relationships using detection-nondetection data from large-scale monitoring programs, which are becoming increasingly prevalent for answering macroscale ecological questions regarding wildlife responses to global change.Supplementary material to this paper is provided online.

Suggested Citation

  • Jeffrey W. Doser & Andrew O. Finley & Sarah P. Saunders & Marc Kéry & Aaron S. Weed & Elise F. Zipkin, 2025. "Modeling Complex Species-Environment Relationships Through Spatially-Varying Coefficient Occupancy Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(1), pages 146-171, March.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00595-6
    DOI: 10.1007/s13253-023-00595-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-023-00595-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-023-00595-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:1:d:10.1007_s13253-023-00595-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.