Author
Listed:
- Scott D. Foster
(Data61 CSIRO)
- Emma Lawrence
(Data61 CSIRO)
- Andrew J. Hoskins
(CSIRO Environment)
Abstract
Direct observation, through surveys, underpins nearly all aspects of environmental sciences. Survey design theory has evolved to make sure that sampling is as efficient as possible whilst remaining robust and fit-for-purpose. However, these methods frequently focus on theoretical aspects and often increase the logistical difficulty of performing the survey. Usually, the survey design process will place individual sampling locations one-by-one throughout the sampling area (e.g. random sampling). A consequence of these approaches is that there is usually a large cost in travel time between locations. This can be a huge problem for surveys that are large in spatial scale or are in inhospitable environments where travel is difficult and/or costly. Our solution is to constrain the sampling process so that the sample consists of spatially clustered observations, with all sites within a cluster lying within a predefined distance. The spatial clustering is achieved by a two-stage sampling process: first cluster centres are sampled and then sites within clusters are sampled. A novelty of our approach is that these clusters are allowed to overlap and we present the necessary calculations required to adjust the specified inclusion probabilities so that they are respected in the clustered sample. The process is illustrated with a real and on-going large-scale ecological survey. We also present simulation results to assess the methods performance. Spatially clustered survey design provides a formal statistical framework for grouping sample sites in space whilst maintaining multiple levels of spatial-balance. These designs reduce the logistical burden placed on field workers by decreasing total travel time and logistical overheads.Supplementary materials accompanying this paper appear on-line.
Suggested Citation
Scott D. Foster & Emma Lawrence & Andrew J. Hoskins, 2024.
"Spatially Clustered Survey Designs,"
Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(1), pages 130-146, March.
Handle:
RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00562-1
DOI: 10.1007/s13253-023-00562-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:1:d:10.1007_s13253-023-00562-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.