IDEAS home Printed from https://ideas.repec.org/a/spr/infsem/v15y2017i1d10.1007_s10257-016-0312-0.html
   My bibliography  Save this article

Gender classification of microblog text based on authorial style

Author

Listed:
  • Shubhadeep Mukherjee

    (Indian Institute of Management Ranchi)

  • Pradip Kumar Bala

    (Indian Institute of Management Ranchi)

Abstract

Gender profiling of unstructured text data has several applications in areas such as marketing, advertising, legal investigation, and recommender systems. The automatic detection of gender in microblogs, like twitter, is a difficult task. It requires a system that can use knowledge to interpret the linguistic styles being used by the genders. In this paper, we try to provide this knowledge for such a system by considering different sets of features, which are relatively independent of the text, such as function words and part of speech n-grams. We test a range of different feature sets using two different classifiers; namely Naïve Bayes and maximum entropy algorithms. Our results show that the gender detection task benefits from the inclusion of features that capture the authorial style of the microblog authors. We achieve an accuracy of approximately 71 %, which outperforms the classification accuracy of commercially available gender detection software like Gender Genie and Gender Guesser.

Suggested Citation

  • Shubhadeep Mukherjee & Pradip Kumar Bala, 2017. "Gender classification of microblog text based on authorial style," Information Systems and e-Business Management, Springer, vol. 15(1), pages 117-138, February.
  • Handle: RePEc:spr:infsem:v:15:y:2017:i:1:d:10.1007_s10257-016-0312-0
    DOI: 10.1007/s10257-016-0312-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10257-016-0312-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10257-016-0312-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vlačić, Božidar & Corbo, Leonardo & Costa e Silva, Susana & Dabić, Marina, 2021. "The evolving role of artificial intelligence in marketing: A review and research agenda," Journal of Business Research, Elsevier, vol. 128(C), pages 187-203.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infsem:v:15:y:2017:i:1:d:10.1007_s10257-016-0312-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.