IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/vyid10.1007_s10796-020-09992-5.html
   My bibliography  Save this article

Atypical Sample Regularizer Autoencoder for Cross-Domain Human Activity Recognition

Author

Listed:
  • Aria Ghora Prabono

    (Hankuk University of Foreign Studies)

  • Bernardo Nugroho Yahya

    (Hankuk University of Foreign Studies)

  • Seok-Lyong Lee

    (Hankuk University of Foreign Studies)

Abstract

The sensor-based human activity recognition (HAR) using machine learning requires a sufficiently large amount of annotated data to realize an accurate classification model. This requirement stimulates the advancement of the transfer learning research area that minimizes the use of labeled data by transferring knowledge from the existing activity recognition domain. Existing approaches transform the data into a common subspace between domains which theoretically loses information, to begin with. Besides, they are based on the linear projection which is bound to linearity assumption and its limitations. Some recent works have already incorporated nonlinearity to find a latent representation that minimizes domain discrepancy based on an autoencoder that includes statistical distance minimization. However, such approach discovers latent representation for both domains at once, which causes sub-optimal representation because both domains compensate each other’s reconstruction error during the training. We propose an autoencoder-based approach on domain adaptation for sensor-based HAR. The proposed approach learns a latent representation which minimizes the discrepancy between domains by reducing statistical distance. Instead of learning representation of both domains simultaneously, our method is a two-phase approach which first learns the representation for the domain of interest independently to ensure its optimality. Subsequently, the useful information from the existing domain is transferred. We test our approach on the publicly available sensor-based HAR datasets, using cross-domain setup. The experimental result shows that our approach significantly outperforms the existing ones.

Suggested Citation

  • Aria Ghora Prabono & Bernardo Nugroho Yahya & Seok-Lyong Lee, 0. "Atypical Sample Regularizer Autoencoder for Cross-Domain Human Activity Recognition," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
  • Handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-020-09992-5
    DOI: 10.1007/s10796-020-09992-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-020-09992-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-020-09992-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvia Chiusano & Tania Cerquitelli & Robert Wrembel & Daniele Quercia, 2021. "Breakthroughs on Cross-Cutting Data Management, Data Analytics, and Applied Data Science," Information Systems Frontiers, Springer, vol. 23(1), pages 1-7, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-020-09992-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.