IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/vyid10.1007_s10796-016-9668-4.html
   My bibliography  Save this article

Leveraging clustering to improve collaborative filtering

Author

Listed:
  • Nima Mirbakhsh

    (Western University)

  • Charles X. Ling

    (Western University)

Abstract

Extensive work on matrix factorization (MF) techniques have been done recently as they provide accurate rating prediction models in recommendation systems. Additional extensions, such as neighbour-aware models, have been shown to improve rating prediction further. However, these models often suffer from a long computation time. In this paper, we propose a novel method that applies clustering algorithms to the latent vectors of users and items. Our method can capture the common interests between the cluster of users and the cluster of items in a latent space. A matrix factorization technique is then applied to this cluster-level rating matrix to predict the future cluster-level interests. We then aggregate the traditional user-item rating predictions with our cluster-level rating predictions to improve the rating prediction accuracy. Our method is a general “wrapper” that can be applied to all collaborative filtering methods. In our experiments, we show that our new approach, when applied to a variety of existing matrix factorization techniques, improves their rating predictions and also results in better rating predictions for cold-start users. Above all, in this paper we show that better quality and more quantity of these clusters achieve a better rating prediction accuracy.

Suggested Citation

  • Nima Mirbakhsh & Charles X. Ling, 0. "Leveraging clustering to improve collaborative filtering," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
  • Handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9668-4
    DOI: 10.1007/s10796-016-9668-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9668-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9668-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v::y::i::d:10.1007_s10796-016-9668-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.