IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v26y2024i6d10.1007_s10796-021-10190-0.html
   My bibliography  Save this article

Data Analytics in Industry 4.0: A Survey

Author

Listed:
  • Lian Duan

    (Hofstra University)

  • Li Xu

    (Old Dominion University)

Abstract

Industry 4.0 is the fourth industrial revolution for decentralized production through shared facilities to achieve on-demand manufacturing and resource efficiency. It evolves from Industry 3.0 which focuses on routine operation. Data analytics is the set of techniques focus on gain actionable insight to make smart decisions from a massive amount of data. As the performance of routine operation can be improved by smart decisions and smart decisions need the support from routine operation to collect relevant data, there is an increasing amount of research effort in the merge between Industry 4.0 and data analytics. To better understand current research efforts, hot topics, and tending topics on this critical intersection, the basic concepts in Industry 4.0 and data analytics are introduced first. Then the merge between them is decomposed into three components: industry sectors, cyber-physical systems, and analytic methods. Joint research efforts on different intersections with different components are studied and discussed. Finally, a systematic literature review on the interaction between Industry 4.0 and data analytics is conducted to understand the existing research focus and trend.

Suggested Citation

  • Lian Duan & Li Xu, 2024. "Data Analytics in Industry 4.0: A Survey," Information Systems Frontiers, Springer, vol. 26(6), pages 2287-2303, December.
  • Handle: RePEc:spr:infosf:v:26:y:2024:i:6:d:10.1007_s10796-021-10190-0
    DOI: 10.1007/s10796-021-10190-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-021-10190-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-021-10190-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:26:y:2024:i:6:d:10.1007_s10796-021-10190-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.