IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v26y2024i4d10.1007_s10796-023-10391-9.html
   My bibliography  Save this article

A Deep Learning based Scalable and Adaptive Feature Extraction Framework for Medical Images

Author

Listed:
  • Zainab Loukil

    (University of Gloucestershire)

  • Qublai Khan Ali Mirza

    (University of Gloucestershire)

  • Will Sayers

    (University of Gloucestershire)

  • Irfan Awan

    (University of Bradford)

Abstract

Features extraction has a fundamental value in enhancing the scalability and adaptability n of medical image processing framework. The outcome of this stage has a tremendous effect on the reliability of the medical application being developed, particularly disease classification and prediction. The challenging side of features extraction frameworks, in relation to medical images, is influenced by the anatomical and morphological structure of the image which requires a powerful extraction system that highlights high- and low- level features. The complementary of both feature types reinforces the medical image content-based retrieval and allows to access visible structures as well as an in-depth understanding of related deep hidden components. Several existing techniques have been used towards extracting high- and low-level features separately, including Deep Learning based approaches. However, the fusion of these features remains a challenging task. Towards tackling the drawback caused by the lack of features combination and enhancing the reliability of features extraction methods, this paper proposes a new hybrid features extraction framework that focuses on the fusion and optimal selection of high- and low-level features. The scalability and reliability of the proposed method is achieved by the automated adjustment of the final optimal features based on real-time scenarios resulting an accurate and efficient medical images disease classification. The proposed framework has been tested on two different datasets to include BraTS and Retinal sets achieving an accuracy rate of 97% and 98.9%, respectively.

Suggested Citation

  • Zainab Loukil & Qublai Khan Ali Mirza & Will Sayers & Irfan Awan, 2024. "A Deep Learning based Scalable and Adaptive Feature Extraction Framework for Medical Images," Information Systems Frontiers, Springer, vol. 26(4), pages 1279-1305, August.
  • Handle: RePEc:spr:infosf:v:26:y:2024:i:4:d:10.1007_s10796-023-10391-9
    DOI: 10.1007/s10796-023-10391-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-023-10391-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-023-10391-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Younas & Irfan Awan, 2024. "Cloud, IoT and Data Science," Information Systems Frontiers, Springer, vol. 26(4), pages 1219-1222, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:26:y:2024:i:4:d:10.1007_s10796-023-10391-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.