IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v26y2024i3d10.1007_s10796-022-10283-4.html
   My bibliography  Save this article

Multiple Treatment Modeling for Target Marketing Campaigns: A Large-Scale Benchmark Study

Author

Listed:
  • Robin M. Gubela

    (Humboldt-Universität zu Berlin)

  • Stefan Lessmann

    (Humboldt-Universität zu Berlin)

  • Björn Stöcker

    (BAUR Versand)

Abstract

Machine learning and artificial intelligence (ML/AI) promise higher degrees of personalization and enhanced efficiency in marketing communication. The paper focuses on causal ML/AI models for campaign targeting. Such models estimate the change in customer behavior due to a marketing action known as the individual treatment effect (ITE) or uplift. ITE estimates capture the value of a marketing action when applied to a specific customer and facilitate effective and efficient targeting. We consolidate uplift models for multiple treatments and continuous outcomes and perform a benchmarking study to demonstrate their potential to target promotional monetary campaigns. In this use case, the new models facilitate selecting the optimal discount amount to offer to a customer. Large-scale analysis based on eight marketing data sets from leading B2C retailers confirms the significant gains in the campaign return on marketing when using the new models compared to relevant model benchmarks and conventional marketing practices.

Suggested Citation

  • Robin M. Gubela & Stefan Lessmann & Björn Stöcker, 2024. "Multiple Treatment Modeling for Target Marketing Campaigns: A Large-Scale Benchmark Study," Information Systems Frontiers, Springer, vol. 26(3), pages 875-898, June.
  • Handle: RePEc:spr:infosf:v:26:y:2024:i:3:d:10.1007_s10796-022-10283-4
    DOI: 10.1007/s10796-022-10283-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-022-10283-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-022-10283-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:26:y:2024:i:3:d:10.1007_s10796-022-10283-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.