IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v22y2020i6d10.1007_s10796-019-09929-7.html
   My bibliography  Save this article

A Novel Approach for Learning How to Automatically Match Job Offers and Candidate Profiles

Author

Listed:
  • Jorge Martinez-Gil

    (Software Competence Center Hagenberg GmbH)

  • Alejandra Lorena Paoletti

    (Software Competence Center Hagenberg GmbH)

  • Mario Pichler

    (Software Competence Center Hagenberg GmbH)

Abstract

Automatic matching of job offers and job candidates is a major problem for a number of organizations and job applicants that if it were successfully addressed could have a positive impact in many countries around the world. In this context, it is widely accepted that semi-automatic matching algorithms between job and candidate profiles would provide a vital technology for making the recruitment processes faster, more accurate and transparent. In this work, we present our research towards achieving a realistic matching approach for satisfactorily addressing this challenge. This novel approach relies on a matching learning solution aiming to learn from past solved cases in order to accurately predict the results in new situations. An empirical study shows us that our approach is able to beat solutions with no learning capabilities by a wide margin.

Suggested Citation

  • Jorge Martinez-Gil & Alejandra Lorena Paoletti & Mario Pichler, 2020. "A Novel Approach for Learning How to Automatically Match Job Offers and Candidate Profiles," Information Systems Frontiers, Springer, vol. 22(6), pages 1265-1274, December.
  • Handle: RePEc:spr:infosf:v:22:y:2020:i:6:d:10.1007_s10796-019-09929-7
    DOI: 10.1007/s10796-019-09929-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-019-09929-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-019-09929-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jorge Martinez-Gil, 2014. "An Overview of Knowledge Management Techniques for e-Recruitment," Journal of Information & Knowledge Management (JIKM), World Scientific Publishing Co. Pte. Ltd., vol. 13(02), pages 1-9.
    2. Jorge Martinez-Gil & José F. Aldana-Montes, 2013. "Semantic similarity measurement using historical google search patterns," Information Systems Frontiers, Springer, vol. 15(3), pages 399-410, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Martinez-Gil & Alejandra Lorena Paoletti & Mario Pichler, 0. "A Novel Approach for Learning How to Automatically Match Job Offers and Candidate Profiles," Information Systems Frontiers, Springer, vol. 0, pages 1-10.
    2. Lin-Chih Chen, 0. "Interactive Topic Search System Based on Topic Cluster Technology," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
    3. Malu Castellanos & Florian Daniel & Irene Garrigós & Jose-Norberto Mazón, 2013. "Business Intelligence and the Web," Information Systems Frontiers, Springer, vol. 15(3), pages 307-309, July.
    4. Rolando Quintero & Miguel Torres-Ruiz & Magdalena Saldaña-Pérez & Carlos Guzmán Sánchez-Mejorada & Felix Mata-Rivera, 2023. "A Conceptual Graph-Based Method to Compute Information Content," Mathematics, MDPI, vol. 11(18), pages 1-22, September.
    5. Lin-Chih Chen, 2021. "Interactive Topic Search System Based on Topic Cluster Technology," Information Systems Frontiers, Springer, vol. 23(5), pages 1227-1243, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:22:y:2020:i:6:d:10.1007_s10796-019-09929-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.