IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v20y2018i5d10.1007_s10796-018-9844-9.html
   My bibliography  Save this article

Classifying and Summarizing Information from Microblogs During Epidemics

Author

Listed:
  • Koustav Rudra

    (IIT Kharagpur)

  • Ashish Sharma

    (IIT Kharagpur)

  • Niloy Ganguly

    (IIT Kharagpur)

  • Muhammad Imran

    (HBKU)

Abstract

During a new disease outbreak, frustration and uncertainties among affected and vulnerable population increase. Affected communities look for known symptoms, prevention measures, and treatment strategies. On the other hand, health organizations try to get situational updates to assess the severity of the outbreak, known affected cases, and other details. Recent emergence of social media platforms such as Twitter provide convenient ways and fast access to disseminate and consume information to/from a wider audience. Research studies have shown potential of this online information to address information needs of concerned authorities during outbreaks, epidemics, and pandemics. In this work, we target three types of end-users (i) vulnerable population—people who are not yet affected and are looking for prevention related information (ii) affected population—people who are affected and looking for treatment related information, and (iii) health organizations—like WHO, who are interested in gaining situational awareness to make timely decisions. We use Twitter data from two recent outbreaks (Ebola and MERS) to build an automatic classification approach useful to categorize tweets into different disease related categories. Moreover, the classified messages are used to generate different kinds of summaries useful for affected and vulnerable communities as well as health organizations. Results obtained from extensive experimentation show the effectiveness of the proposed approach.

Suggested Citation

  • Koustav Rudra & Ashish Sharma & Niloy Ganguly & Muhammad Imran, 2018. "Classifying and Summarizing Information from Microblogs During Epidemics," Information Systems Frontiers, Springer, vol. 20(5), pages 933-948, October.
  • Handle: RePEc:spr:infosf:v:20:y:2018:i:5:d:10.1007_s10796-018-9844-9
    DOI: 10.1007/s10796-018-9844-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-018-9844-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-018-9844-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Stieglitz & Christian Meske & Björn Ross & Milad Mirbabaie, 2020. "Going Back in Time to Predict the Future - The Complex Role of the Data Collection Period in Social Media Analytics," Information Systems Frontiers, Springer, vol. 22(2), pages 395-409, April.
    2. Amir Hassan Zadeh & Hamed M. Zolbanin & Ramesh Sharda & Dursun Delen, 2019. "Social Media for Nowcasting Flu Activity: Spatio-Temporal Big Data Analysis," Information Systems Frontiers, Springer, vol. 21(4), pages 743-760, August.
    3. Fahd A. Ghanem & M. C. Padma & Ramez Alkhatib, 2023. "Automatic Short Text Summarization Techniques in Social Media Platforms," Future Internet, MDPI, vol. 15(9), pages 1-27, September.
    4. Shalak Mendon & Pankaj Dutta & Abhishek Behl & Stefan Lessmann, 2021. "A Hybrid Approach of Machine Learning and Lexicons to Sentiment Analysis: Enhanced Insights from Twitter Data of Natural Disasters," Information Systems Frontiers, Springer, vol. 23(5), pages 1145-1168, September.
    5. Saptarshi Ghosh & Kripabandhu Ghosh & Debasis Ganguly & Tanmoy Chakraborty & Gareth J. F. Jones & Marie-Francine Moens & Muhammad Imran, 2018. "Exploitation of Social Media for Emergency Relief and Preparedness: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(5), pages 901-907, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:20:y:2018:i:5:d:10.1007_s10796-018-9844-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.