IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v20y2018i2d10.1007_s10796-016-9724-0.html
   My bibliography  Save this article

A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews

Author

Listed:
  • Jun Liu

    (Dakota State University)

  • Prem Timsina

    (Dakota State University)

  • Omar El-Gayar

    (Dakota State University)

Abstract

While systematic reviews are positioned as an essential element of modern evidence-based medical practice, the creation of these reviews is resource intensive. To mitigate this problem, there have been some attempts to leverage supervised machine learning to automate the article triage procedure. This approach has been proved to be helpful for updating existing systematic reviews. However, this technique holds very little promise for creating new reviews because training data is rarely available when it comes to systematic creation. In this research we assess and compare the applicability of semi-supervised learning to overcome this labeling bottleneck and support the creation of systematic reviews. The results indicated that semi-supervised learning could significantly reduce the human effort and is a viable technique for automating medical systematic review creation with a small-sized training dataset.

Suggested Citation

  • Jun Liu & Prem Timsina & Omar El-Gayar, 2018. "A comparative analysis of semi-supervised learning: The case of article selection for medical systematic reviews," Information Systems Frontiers, Springer, vol. 20(2), pages 195-207, April.
  • Handle: RePEc:spr:infosf:v:20:y:2018:i:2:d:10.1007_s10796-016-9724-0
    DOI: 10.1007/s10796-016-9724-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-016-9724-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-016-9724-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoon Sang Lee & Chulhwan Chris Bang, 2022. "Framework for the Classification of Imbalanced Structured Data Using Under-sampling and Convolutional Neural Network," Information Systems Frontiers, Springer, vol. 24(6), pages 1795-1809, December.
    2. Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:20:y:2018:i:2:d:10.1007_s10796-016-9724-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.