IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v16y2014i5d10.1007_s10796-013-9427-8.html
   My bibliography  Save this article

Concept-concept association information integration and multi-model collaboration for multimedia semantic concept detection

Author

Listed:
  • Tao Meng

    (University of Miami)

  • Mei-Ling Shyu

    (University of Miami)

Abstract

The recent development of the digital camera technology and the popularity of social network websites such as Facebook and Youtube have created huge amounts of multimedia data. Multimedia information is ubiquitous and essential in many applications. In order to fill the gap between data and application requirements (or the so-called semantic gap), advanced methods and tools are needed to automatically mine and annotate high-level concepts to assist in associating the low-level features to the high-level concepts directly. It has been shown that concept-concept association can be effective in bridging the semantic gap in multimedia data. In this paper, a concept-concept association information integration and multi-model collaboration framework is proposed to enhance high-level semantic concept detection from multimedia data. Several experiments are conducted and the comparison results demonstrate that the proposed framework outperforms those approaches in the comparison in terms of the Mean Average Precision (MAP) values.

Suggested Citation

  • Tao Meng & Mei-Ling Shyu, 2014. "Concept-concept association information integration and multi-model collaboration for multimedia semantic concept detection," Information Systems Frontiers, Springer, vol. 16(5), pages 787-799, November.
  • Handle: RePEc:spr:infosf:v:16:y:2014:i:5:d:10.1007_s10796-013-9427-8
    DOI: 10.1007/s10796-013-9427-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-013-9427-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-013-9427-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chengcui Zhang & Elisa Bertino & Bhavani Thuraisingham & James Joshi, 2014. "Guest editorial: Information reuse, integration, and reusable systems," Information Systems Frontiers, Springer, vol. 16(5), pages 749-752, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:16:y:2014:i:5:d:10.1007_s10796-013-9427-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.