IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v11y2009i4d10.1007_s10796-009-9158-z.html
   My bibliography  Save this article

Proportional fault-tolerant data mining with applications to bioinformatics

Author

Listed:
  • Guanling Lee

    (National Dong Hwa University)

  • Sheng-Lung Peng

    (National Dong Hwa University)

  • Yuh-Tzu Lin

    (National Dong Hwa University)

Abstract

The mining of frequent patterns in databases has been studied for several years, but few reports have discussed for fault-tolerant (FT) pattern mining. FT data mining is more suitable for extracting interesting information from real-world data that may be polluted by noise. In particular, the increasing amount of today’s biological databases requires such a data mining technique to mine important data, e.g., motifs. In this paper, we propose the concept of proportional FT mining of frequent patterns. The number of tolerable faults in a proportional FT pattern is proportional to the length of the pattern. Two algorithms are designed for solving this problem. The first algorithm, named FT-BottomUp, applies an FT-Apriori heuristic and finds all FT patterns with any number of faults. The second algorithm, FT-LevelWise, divides all FT patterns into several groups according to the number of tolerable faults, and mines the content patterns of each group in turn. By applying our algorithm on real data, two reported epitopes of spike proteins of SARS-CoV can be found in our resulting itemset and the proportional FT data mining is better than the fixed FT data mining for this application.

Suggested Citation

  • Guanling Lee & Sheng-Lung Peng & Yuh-Tzu Lin, 2009. "Proportional fault-tolerant data mining with applications to bioinformatics," Information Systems Frontiers, Springer, vol. 11(4), pages 461-469, September.
  • Handle: RePEc:spr:infosf:v:11:y:2009:i:4:d:10.1007_s10796-009-9158-z
    DOI: 10.1007/s10796-009-9158-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-009-9158-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-009-9158-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max Kotlyar & Igor Jurisica, 2006. "Predicting Protein-Protein Interactions by Association Mining," Information Systems Frontiers, Springer, vol. 8(1), pages 37-47, February.
    2. Chin-Feng Lee & S. Wesley Changchien & Wei-Tse Wang & Jau-Ji Shen, 2006. "A data mining approach to database compression," Information Systems Frontiers, Springer, vol. 8(3), pages 147-161, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent S. Tseng & Hsieh-Hui Yu & Shih-Chiang Yang, 2009. "Efficient mining of multilevel gene association rules from microarray and gene ontology," Information Systems Frontiers, Springer, vol. 11(4), pages 433-447, September.
    2. Chulhwan Chris Bang, 2015. "Information systems frontiers: Keyword analysis and classification," Information Systems Frontiers, Springer, vol. 17(1), pages 217-237, February.
    3. Agapito, Giuseppe & Guzzi, Pietro Hiram & Cannataro, Mario, 2019. "Parallel extraction of association rules from genomics data," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 434-446.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:11:y:2009:i:4:d:10.1007_s10796-009-9158-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.