IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v55y2024i4d10.1007_s13226-023-00451-w.html
   My bibliography  Save this article

Construction of cyclic DNA codes over $$\varvec{\mathrm{{Z}}_4R}$$ Z 4 R

Author

Listed:
  • Tulay Yildirim

    (Karabuk University)

Abstract

This study is devoted to the construction of cyclic DNA codes of odd length over $$\mathbb {Z}_4\mathbb {R}$$ Z 4 R . The generator polynomial of cyclic codes of this ring and the structure of its separable codes are studied in detail. A map $$\psi _\beta $$ ψ β from $$\mathbb {R}^\beta $$ R β to $$\lbrace A, T, G, C \rbrace ^{2\beta }$$ { A , T , G , C } 2 β is defined and then constructed a one-to-one correspondence between DNA codons of alphabets and the elements of $$\mathbb {R}$$ R . Furthermore, necessary and sufficient circumstances of cyclic codes over $$\mathbb {Z}_4$$ Z 4 , $$\mathbb {R}$$ R and $$\mathbb {Z}_4\mathbb {R}$$ Z 4 R to be reversible codes and reverse-complement constraints codes are determined. To support the theories, some important examples are illustrated.

Suggested Citation

  • Tulay Yildirim, 2024. "Construction of cyclic DNA codes over $$\varvec{\mathrm{{Z}}_4R}$$ Z 4 R," Indian Journal of Pure and Applied Mathematics, Springer, vol. 55(4), pages 1465-1476, December.
  • Handle: RePEc:spr:indpam:v:55:y:2024:i:4:d:10.1007_s13226-023-00451-w
    DOI: 10.1007/s13226-023-00451-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-023-00451-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-023-00451-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaakov Benenson & Binyamin Gil & Uri Ben-Dor & Rivka Adar & Ehud Shapiro, 2004. "An autonomous molecular computer for logical control of gene expression," Nature, Nature, vol. 429(6990), pages 423-429, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hai Q. Dinh & Sachin Pathak & Ashish Kumar Upadhyay & Woraphon Yamaka, 2020. "New DNA Codes from Cyclic Codes over Mixed Alphabets," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    2. Roland W. Scholz, 2016. "Sustainable Digital Environments: What Major Challenges Is Humankind Facing?," Sustainability, MDPI, vol. 8(8), pages 1-31, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:55:y:2024:i:4:d:10.1007_s13226-023-00451-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.