IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v54y2023i3d10.1007_s13226-022-00285-y.html
   My bibliography  Save this article

Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers

Author

Listed:
  • Sheetal Chawla

    (Pt. N.R.S. Government College Rohtak)

  • Urmil

    (Maharshi Dayanand University)

  • Jagbir Singh

    (Maharshi Dayanand University)

Abstract

In the present paper, Robin boundary value problem for a system of singularly perturbed reaction-diffusion equations with discontinuous source term is studied. The highest order derivative in each equation is multiplied by the perturbation parameters which are different in magnitude. The considered system does not obey maximum principle. Forward-backward approximation is used for the Robin boundary conditions and a central finite difference approximation is proposed for the differential system in conjunction with piecewise uniform Shishkin meshes and graded Bakhvalov meshes. The scheme is proved to be an almost first-order parameter uniform convergent. Numerical experiments are presented which are in line with the theoretical findings.

Suggested Citation

  • Sheetal Chawla & Urmil & Jagbir Singh, 2023. "Fitted mesh numerical method for a coupled system of singularly perturbed reaction-diffusion robin boundary value problem having boundary and internal layers," Indian Journal of Pure and Applied Mathematics, Springer, vol. 54(3), pages 675-688, September.
  • Handle: RePEc:spr:indpam:v:54:y:2023:i:3:d:10.1007_s13226-022-00285-y
    DOI: 10.1007/s13226-022-00285-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-022-00285-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-022-00285-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:54:y:2023:i:3:d:10.1007_s13226-022-00285-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.