IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v53y2022i1d10.1007_s13226-021-00087-8.html
   My bibliography  Save this article

Two dimensional constacyclic codes of arbitrary length over finite fields

Author

Listed:
  • Swati Bhardwaj

    (Panjab University)

  • Madhu Raka

    (Panjab University)

Abstract

In this paper we characterize the algebraic structure of two-dimensional $$(\alpha ,\beta )$$ ( α , β ) -constacyclic codes of arbitrary length $$s\ell $$ s ℓ and of their duals over a finite field $$\mathbb{F}_q $$ F q , where $$\alpha ,\beta$$ α , β are non zero elements of $$\mathbb{F}_q $$ F q . For $$\alpha ,\beta \in \{1,-1\}$$ α , β ∈ { 1 , - 1 } , we give necessary and sufficient conditions for a two-dimensional $$(\alpha ,\beta )$$ ( α , β ) -constacyclic code to be self-dual. We also show that a two-dimensional $$(\alpha ,1 )$$ ( α , 1 ) -constacyclic code $${\mathcal {C}}$$ C of length $$n=s\ell $$ n = s ℓ cannot be self-dual if $$\gcd (s,q)= 1$$ gcd ( s , q ) = 1 . Finally, we give some examples of self-dual, isodual, MDS and quasi-twisted codes corresponding to two-dimensional $$(\alpha ,\beta )$$ ( α , β ) -constacyclic codes.

Suggested Citation

  • Swati Bhardwaj & Madhu Raka, 2022. "Two dimensional constacyclic codes of arbitrary length over finite fields," Indian Journal of Pure and Applied Mathematics, Springer, vol. 53(1), pages 49-61, March.
  • Handle: RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00087-8
    DOI: 10.1007/s13226-021-00087-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-021-00087-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-021-00087-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Madhu Raka, 2015. "A class of constacyclic codes over a finite field-II," Indian Journal of Pure and Applied Mathematics, Springer, vol. 46(6), pages 809-825, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:53:y:2022:i:1:d:10.1007_s13226-021-00087-8. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.