Trotter-Kato approximations of stochastic neutral partial functional differential equations
Author
Abstract
Suggested Citation
DOI: 10.1007/s13226-021-00146-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ahmed, N. U. & Ding, X., 1995. "A semilinear Mckean-Vlasov stochastic evolution equation in Hilbert space," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 65-85, November.
- Govindan, T.E., 2015. "On Trotter–Kato approximations of semilinear stochastic evolution equations in infinite dimensions," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 299-306.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Govindan, T.E., 2015. "On Trotter–Kato approximations of semilinear stochastic evolution equations in infinite dimensions," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 299-306.
- Li, Zhi & Luo, Jiaowan, 2012. "Mean-field reflected backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1961-1968.
- Liu, Huoxia & Lin, Judy Yangjun, 2023. "Stochastic McKean–Vlasov equations with Lévy noise: Existence, attractiveness and stability," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
- Govindan, T.E., 2014. "Weak convergence of probability measures of Yosida approximate mild solutions of neutral SPDEs," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 26-32.
- Lu, Wen & Ren, Yong & Hu, Lanying, 2015. "Mean-field backward stochastic differential equations in general probability spaces," Applied Mathematics and Computation, Elsevier, vol. 263(C), pages 1-11.
- Gess, Benjamin & Gnann, Manuel V., 2020. "The stochastic thin-film equation: Existence of nonnegative martingale solutions," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7260-7302.
- Lu, Wen & Ren, Yong & Hu, Lanying, 2015. "Mean-field backward stochastic differential equations with subdifferential operator and its applications," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 73-81.
More about this item
Keywords
Stochastic neutral partial functional differential equations; Lipschitz and linear growth conditions; existence and uniqueness of mild solutions; Trotter-Kato approximations; a classical limit theorem; weak convergence of induced probability measures;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:52:y:2021:i:3:d:10.1007_s13226-021-00146-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.