IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i4d10.1007_s13226-020-0466-9.html
   My bibliography  Save this article

New Escape Criteria for Complex Fractals Generation in Jungck-CR Orbit

Author

Listed:
  • Muhammad Tanveer

    (University of Lahore)

  • Waqas Nazeer

    (University of Education)

  • Krzysztof Gdawiec

    (Universityof Silesia)

Abstract

In recent years, researchers have studied the use of different iteration processes from fixed point theory for the generation of complex fractals. Examples are the Mann, the Ishikawa, the Noor, the Jungck-Mann and the Jungck-Ishikawa iterations. In this paper, we present a generalisation of complex fractals, namely Mandelbrot, Julia and multicorn sets, using the Jungck-CR implicit iteration scheme. This type of iteration does not reduce to any of the other iterations previously used in the study of complex fractals; thus, this generalisation gives rise to new fractal forms. We prove a new escape criterion for a polynomial of the following form zm − az + c, where a, c ∈ ℂ, and present some graphical examples of the obtained complex fractals.

Suggested Citation

  • Muhammad Tanveer & Waqas Nazeer & Krzysztof Gdawiec, 2020. "New Escape Criteria for Complex Fractals Generation in Jungck-CR Orbit," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(4), pages 1285-1303, December.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:4:d:10.1007_s13226-020-0466-9
    DOI: 10.1007/s13226-020-0466-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0466-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0466-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Negi, Ashish & Rani, Mamta, 2008. "A new approach to dynamic noise on superior Mandelbrot set," Chaos, Solitons & Fractals, Elsevier, vol. 36(4), pages 1089-1096.
    2. Yuanyuan Sun & Lina Chen & Rudan Xu & Ruiqing Kong, 2014. "An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-9, January.
    3. S. L. Singh & Charu Bhatnagar & S. N. Mishra, 2005. "Stability of Jungck-type iterative procedures," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2005, pages 1-9, January.
    4. Gdawiec, Krzysztof & Kotarski, Wiesław, 2017. "Polynomiography for the polynomial infinity norm via Kalantari’s formula and nonstandard iterations," Applied Mathematics and Computation, Elsevier, vol. 307(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rawat, Shivam & Prajapati, Darshana J. & Tomar, Anita & Gdawiec, Krzysztof, 2024. "Generation of Mandelbrot and Julia sets for generalized rational maps using SP-iteration process equipped with s-convexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 148-169.
    2. Adhikari, Nabaraj & Sintunavarat, Wutiphol, 2024. "The Julia and Mandelbrot sets for the function zp−qz2+rz+sincw exhibit Mann and Picard–Mann orbits along with s-convexity," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lateef Olakunle Jolaoso & Safeer Hussain Khan, 2020. "Some Escape Time Results for General Complex Polynomials and Biomorphs Generation by a New Iteration Process," Mathematics, MDPI, vol. 8(12), pages 1-18, December.
    2. Lateef Olakunle Jolaoso & Safeer Hussain Khan & Kazeem Olalekan Aremu, 2022. "Dynamics of RK Iteration and Basic Family of Iterations for Polynomiography," Mathematics, MDPI, vol. 10(18), pages 1-16, September.
    3. Rawat, Shivam & Prajapati, Darshana J. & Tomar, Anita & Gdawiec, Krzysztof, 2024. "Generation of Mandelbrot and Julia sets for generalized rational maps using SP-iteration process equipped with s-convexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 148-169.
    4. Andreadis, Ioannis & Karakasidis, Theodoros E., 2009. "On probabilistic Mandelbrot maps," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1577-1583.
    5. Bisheh-Niasar, Morteza & Gdawiec, Krzysztof, 2019. "Bisheh-Niasar–Saadatmandi root finding method via the S-iteration with periodic parameters and its polynomiography," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 160(C), pages 1-12.
    6. Panadda Thongpaen & Rattanakorn Wattanataweekul, 2021. "A Fast Fixed-Point Algorithm for Convex Minimization Problems and Its Application in Image Restoration Problems," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    7. Keten Çopur, Ayşegül & Hacıoğlu, Emirhan & Gürsoy, Faik, 2024. "New insights on a pair of quasi-contractive operators in Banach spaces: Results on Jungck type iteration algorithms and proposed open problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 476-497.
    8. Tassaddiq, Asifa, 2022. "General escape criteria for the generation of fractals in extended Jungck–Noor orbit," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 1-14.
    9. Adhikari, Nabaraj & Sintunavarat, Wutiphol, 2024. "Exploring the Julia and Mandelbrot sets of zp+logct using a four-step iteration scheme extended with s-convexity," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 357-381.
    10. Singh, S.L. & Jain, Sarika & Mishra, S.N., 2009. "A new approach to superfractals," Chaos, Solitons & Fractals, Elsevier, vol. 42(5), pages 3110-3120.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:4:d:10.1007_s13226-020-0466-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.