IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v51y2020i3d10.1007_s13226-020-0460-2.html
   My bibliography  Save this article

Exact Solutions of Generalized Riemann Problem for Nonhomogeneous Shallow Water Equations

Author

Listed:
  • Sueet Millon Sahoo

    (Indian Institute of Technology Kharagpur)

  • T. Raja Sekhar

    (Indian Institute of Technology Kharagpur)

  • G. P. Raja Sekhar

    (Indian Institute of Technology Kharagpur)

Abstract

In this paper, we consider quasilinear hyperbolic system of balance laws describing one-dimensional nonhomogeneous shallow water equations with generalized Riemann initial data. We obtain exact solutions to the shallow water equations with friction by using differential constraint method. A special case of the obtained solution provides well known rarefaction wave to the homogeneous case of the governing equations. We construct a convenient example for the generalized Riemann problem and study the behavior of the solution profiles.

Suggested Citation

  • Sueet Millon Sahoo & T. Raja Sekhar & G. P. Raja Sekhar, 2020. "Exact Solutions of Generalized Riemann Problem for Nonhomogeneous Shallow Water Equations," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 1225-1237, September.
  • Handle: RePEc:spr:indpam:v:51:y:2020:i:3:d:10.1007_s13226-020-0460-2
    DOI: 10.1007/s13226-020-0460-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-020-0460-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-020-0460-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. Ambika & R. Radha, 2016. "Riemann problem in non-ideal gas dynamics," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(3), pages 501-521, September.
    2. Kuila, Sahadeb & Raja Sekhar, T. & Zeidan, D., 2015. "A Robust and accurate Riemann solver for a compressible two-phase flow model," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 681-695.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jana, Sumita & Kuila, Sahadeb, 2022. "Exact solution of the flux perturbed Riemann problem for Cargo-LeRoux model in a van der Waals gas," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jöns, Steven & Munz, Claus-Dieter, 2023. "Riemann solvers for phase transition in a compressible sharp-interface method," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    2. Jana, Sumita & Kuila, Sahadeb, 2022. "Exact solution of the flux perturbed Riemann problem for Cargo-LeRoux model in a van der Waals gas," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Minhajul, & Zeidan, D. & Raja Sekhar, T., 2018. "On the wave interactions in the drift-flux equations of two-phase flows," Applied Mathematics and Computation, Elsevier, vol. 327(C), pages 117-131.
    4. Minhajul, & Mondal, Rakib, 2023. "Wave interaction in isothermal drift-flux model of two-phase flows," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:51:y:2020:i:3:d:10.1007_s13226-020-0460-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.