IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v50y2019i4d10.1007_s13226-019-0374-z.html
   My bibliography  Save this article

Generalized plane delta shock waves for the n-dimensional zero-pressure gas dynamics with energy conservation law

Author

Listed:
  • Yanyan Zhang

    (Xinyang Normal University)

  • Yu Zhang

    (Yunnan Normal University)

Abstract

By virtue of the generalized plane wave solution, we study a type of generalized plane delta shock wave for the n-dimensional zero-pressure gas dynamics governed by the conservation of mass, momentum and energy. It is found that a special kind of generalized plane delta shock wave on which both state variables simultaneously contain the Dirac delta functions appears in Riemann solutions, which is significantly different from the customary ones on which only one state variable contains the Dirac delta function. The generalized Rankine-Hugoniot relation of the generalized plane delta shock wave is derived. Under a suitable entropy condition, we further solve a kind of n-dimensional Riemann problem with Randon measure as initial data, and four different explicit configurations of solutions are constructively established. Finally, the overtaking of two plane delta shock waves is analyzed.

Suggested Citation

  • Yanyan Zhang & Yu Zhang, 2019. "Generalized plane delta shock waves for the n-dimensional zero-pressure gas dynamics with energy conservation law," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 1067-1086, December.
  • Handle: RePEc:spr:indpam:v:50:y:2019:i:4:d:10.1007_s13226-019-0374-z
    DOI: 10.1007/s13226-019-0374-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-019-0374-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-019-0374-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:50:y:2019:i:4:d:10.1007_s13226-019-0374-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.