IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v50y2019i1d10.1007_s13226-019-0310-2.html
   My bibliography  Save this article

Decoding of Cyclic Codes Over the Ring $$\frac{{{F_2}\left[ u \right]}}{{\langle {u^t}\rangle }}$$ F 2 [ u ] 〈 u t 〉

Author

Listed:
  • Karim Samei

    (Bu-Ali Sina university)

  • Mohammad Reza Alimoradi

    (University of Malayer)

Abstract

In this paper we resolve an open problem about decoding cyclic codes over the ring F2+uF2 with u2 = 0. This problem was first proposed by AbuAlrub et al. in (Des Codes Crypt 42: 273-287, 2007). Also we extend this decoding procedure for cyclic codes of arbitrary length over the ringe $$\frac{{{F_2}\left[ u \right]}}{{\langle {u^t}\rangle }} = {F_2} + u{F_2} + {u^2}{F_2} + \cdots {u^{t - 1}}{F_2}$$ F 2 [ u ] 〈 u t 〉 = F 2 + u F 2 + u 2 F 2 + ⋯ u t − 1 F 2 , where ut = 0.

Suggested Citation

  • Karim Samei & Mohammad Reza Alimoradi, 2019. "Decoding of Cyclic Codes Over the Ring $$\frac{{{F_2}\left[ u \right]}}{{\langle {u^t}\rangle }}$$ F 2 [ u ] 〈 u t 〉," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(1), pages 113-120, March.
  • Handle: RePEc:spr:indpam:v:50:y:2019:i:1:d:10.1007_s13226-019-0310-2
    DOI: 10.1007/s13226-019-0310-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-019-0310-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-019-0310-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:50:y:2019:i:1:d:10.1007_s13226-019-0310-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.