IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v48y2017i2d10.1007_s13226-017-0221-z.html
   My bibliography  Save this article

On K p,q -factorization of complete bipartite multigraphs

Author

Listed:
  • Mingchao Li

    (Department of Mathematics Soochow University)

  • Jian Wang

    (Nantong Vocational University)

Abstract

Let λK m,n be a complete bipartite multigraph with two partite sets having m and n vertices, respectively. A K p,q -factorization of λK m,n is a set of edge-disjoint K p,q -factors of λK m,n which partition the set of edges of λK m,n . When p = 1 and q is a prime number, Wang, in his paper [On K 1,q -factorization of complete bipartite graph, Discrete Math., 126: (1994), 359-364], investigated the K 1,q -factorization of K m,n and gave a sufficient condition for such a factorization to exist. In papers [K 1,k -factorization of complete bipartite graphs, Discrete Math., 259: 301-306 (2002),; K p,q -factorization of complete bipartite graphs, Sci. China Ser. A-Math., 47: (2004), 473-479], Du and Wang extended Wang’s result to the case that p and q are any positive integers. In this paper, we give a sufficient condition for λK m,n to have a K p,q -factorization. As a special case, it is shown that the necessary condition for the K p,q -factorization of λK m,n is always sufficient when p : q = k : (k + 1) for any positive integer k.

Suggested Citation

  • Mingchao Li & Jian Wang, 2017. "On K p,q -factorization of complete bipartite multigraphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 48(2), pages 221-231, June.
  • Handle: RePEc:spr:indpam:v:48:y:2017:i:2:d:10.1007_s13226-017-0221-z
    DOI: 10.1007/s13226-017-0221-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-017-0221-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-017-0221-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:48:y:2017:i:2:d:10.1007_s13226-017-0221-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.