IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v45y2014i5d10.1007_s13226-014-0085-4.html
   My bibliography  Save this article

Galois representations, automorphic forms, and the Sato-Tate Conjecture

Author

Listed:
  • Michael Harris

    (Université Paris 7)

Abstract

The present text consists of notes of several lectures on the proof of the Sato-Tate Conjecture given up through 2008. The goal of the lectures was to explain the statement and the main ideas of the proof. The notes are somewhat dated; shortly after they were written, the author, together with Bernet-Lamb, Geraghty, and Taylor, were able to prove the analogue of the Sato-Tate conjecture for all elliptic modular forms. In particular, Theorems 2.4 and 2.5 are not conditional, and the condition on the j-invariant in Theorem 1.1 is superfluous. Moreover, the methods of proof outlined in sections 3 and 4 have been generalized and extended in a number of ways, notably in a series of articles by Barnet-Lamb, Gee, Geraghty, and Taylor, by Thorne, and by Calegari and Geraghty.

Suggested Citation

  • Michael Harris, 2014. "Galois representations, automorphic forms, and the Sato-Tate Conjecture," Indian Journal of Pure and Applied Mathematics, Springer, vol. 45(5), pages 707-746, October.
  • Handle: RePEc:spr:indpam:v:45:y:2014:i:5:d:10.1007_s13226-014-0085-4
    DOI: 10.1007/s13226-014-0085-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-014-0085-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-014-0085-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:45:y:2014:i:5:d:10.1007_s13226-014-0085-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.