IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v44y2013i3d10.1007_s13226-013-0016-9.html
   My bibliography  Save this article

Semi-linear Liouville theorems in the generalized Greiner vector fields

Author

Listed:
  • Yazhou Han

    (China Jiliang University)

  • Qiong Zhao

    (China Jiliang University)

  • Yongyang Jin

    (Zhejiang University of Technology)

Abstract

This paper is devoted to study a class of semi-linear elliptic equation with principal part constructed by generalized Greiner vector fields. Using the idea of vector field method, we introduce a new functional for generalized Greiner vector fields. Through many identity deformations and accurate estimates, a class of Liouville type theorem is given. It improves the Liouville type theorem obtained by Niu etc., which can be seen in Canad. Math. Bull., 47(3), 417–430 (2004).

Suggested Citation

  • Yazhou Han & Qiong Zhao & Yongyang Jin, 2013. "Semi-linear Liouville theorems in the generalized Greiner vector fields," Indian Journal of Pure and Applied Mathematics, Springer, vol. 44(3), pages 311-342, June.
  • Handle: RePEc:spr:indpam:v:44:y:2013:i:3:d:10.1007_s13226-013-0016-9
    DOI: 10.1007/s13226-013-0016-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-013-0016-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-013-0016-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Shi, 2022. "Liouville-Type Theorem for Nonlinear Elliptic Equations Involving Generalized Greiner Operator," Mathematics, MDPI, vol. 11(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:44:y:2013:i:3:d:10.1007_s13226-013-0016-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.