IDEAS home Printed from https://ideas.repec.org/a/spr/indpam/v41y2010i1d10.1007_s13226-010-0006-0.html
   My bibliography  Save this article

Minimax second-order designs over cuboidal regions for the difference between two estimated responses

Author

Listed:
  • S. Huda

    (Kuwait University)

  • Rahul Mukerjee

    (Indian Institute of Management Calcutta, Joka)

Abstract

Minimization of the variance of the difference between estimated responses at two points, maximized over all pairs of points in the factor space, is taken as the design criterion. Optimal designs under this criterion are derived, via a combination of algebraic and numerical techniques, for the full second-order regression model over cuboidal regions. Use of a convexity argument and a surrogate objective function significantly reduces the computational burden.

Suggested Citation

  • S. Huda & Rahul Mukerjee, 2010. "Minimax second-order designs over cuboidal regions for the difference between two estimated responses," Indian Journal of Pure and Applied Mathematics, Springer, vol. 41(1), pages 303-312, February.
  • Handle: RePEc:spr:indpam:v:41:y:2010:i:1:d:10.1007_s13226-010-0006-0
    DOI: 10.1007/s13226-010-0006-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13226-010-0006-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13226-010-0006-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huda, S., 1997. "Minimax second-order designs over hypercubes for the difference between estimated responses at a point and at the centre," Statistics & Probability Letters, Elsevier, vol. 33(2), pages 193-199, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Alimohammady & M. Ramazannejad, 2016. "Inertial proximal algorithm for difference of two maximal monotone operators," Indian Journal of Pure and Applied Mathematics, Springer, vol. 47(1), pages 1-8, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:indpam:v:41:y:2010:i:1:d:10.1007_s13226-010-0006-0. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.