IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i4d10.1007_s13198-017-0642-4.html
   My bibliography  Save this article

Self balanced particle swarm optimization

Author

Listed:
  • Pawan Bhambu

    (Arya College of Engineering & IT)

  • Sandeep Kumar

    (Jagannath University)

  • Kavita Sharma

    (Government Polytechnic College)

Abstract

In the field of swarm intelligence inspired algorithms, particle swarm optimization (PSO) is a renowned meta-heuristic due to its simplicity, performance, and implementation. However, the PSO also have some downsides like stagnation and slow convergence due to improper balance between the diversification and convergence abilities of the population. Therefore, in this paper, solution search process of PSO algorithm is modified to balance the organization of the individuals in the search space. In the proposed approach, artificial bee colony (ABC) algorithm inspired fitness-based solution search process is incorporated with the PSO algorithm. The proposed approach is tested over 20 unbiased benchmark functions, and the reported results are compared with PSO 2011, ABC, differential evaluation, self-adaptive acceleration factor in PSO, and Mean PSO algorithms through proper statistical analyses.

Suggested Citation

  • Pawan Bhambu & Sandeep Kumar & Kavita Sharma, 2018. "Self balanced particle swarm optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(4), pages 774-783, August.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0642-4
    DOI: 10.1007/s13198-017-0642-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0642-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0642-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:4:d:10.1007_s13198-017-0642-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.