IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v9y2018i1d10.1007_s13198-016-0484-5.html
   My bibliography  Save this article

Prediction of municipal solid waste generation for optimum planning and management with artificial neural network—case study: Faridabad City in Haryana State (India)

Author

Listed:
  • Dipti Singh

    (Gautam Buddha University)

  • Ajay Satija

    (Inderprastha Engineering College)

Abstract

Accurate prediction of municipal solid waste generation has an important role in future planning and waste management system. The characteristics of the generated solid waste are different at different places (municipality to municipality or country to country). The accurate prediction of municipal solid waste (MSW) generation becomes a crucial task in modern era. Its prediction requires accurate MSW data. The aim of the present study is to design the time series model for predicting monthly based municipal solid waste generation in Faridabad city of Haryana State (India) using artificial neural network (ANN) time series autoregressive approach. The collected municipal solid waste observations have been arranged monthly from 2010 to 2014. The 60 months data set is divided into 42 training data sets, 9 testing data sets and 9 validating data sets. Various structures of ANN have been investigated by changing the number of hidden layer neurons. Finally best optimized structure of neural network is found. The proposed model is validated by the minimum value of performance parameters such as mean square error 0.0003714, root mean square error 0.01927 and the high value of the coefficient of regression 0.8385. On the bases of these performance parameters it is concluded that the proposed ANN model gives accurate predictive results.

Suggested Citation

  • Dipti Singh & Ajay Satija, 2018. "Prediction of municipal solid waste generation for optimum planning and management with artificial neural network—case study: Faridabad City in Haryana State (India)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 91-97, February.
  • Handle: RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0484-5
    DOI: 10.1007/s13198-016-0484-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0484-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0484-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johanna Karina Solano Meza & David Orjuela Yepes & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero, 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    2. Vladimir Simic & Ali Ebadi Torkayesh & Abtin Ijadi Maghsoodi, 2023. "Locating a disinfection facility for hazardous healthcare waste in the COVID-19 era: a novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm," Annals of Operations Research, Springer, vol. 328(1), pages 1105-1150, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:9:y:2018:i:1:d:10.1007_s13198-016-0484-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.