IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i4d10.1007_s13198-017-0597-5.html
   My bibliography  Save this article

An integral sliding mode controller with super-twisting algorithm for direct power control of wind generator based on a doubly fed induction generator

Author

Listed:
  • F. Z. Tria

    (University of Biskra)

  • K. Srairi

    (University of Biskra)

  • M. T. Benchouia

    (University of Biskra)

  • M. E. H. Benbouzid

    (University of Brest
    Shanghai Maritime University)

Abstract

In order to reduce the chattering phenomena in the conventional sliding mode control, which appears mostly in the rotor currents, the integral sliding mode controller using the super-twisting algorithm is proposed. In this controller, the sliding surfaces are chosen so that they will be compatible with the errors in the stator active and reactive powers. The simulation results obtained when using a three blades wind turbine based a doubly fed induction generator; show the robustness of the proposed control model. The minimization of the chattering such as in the direct and the quadrature component of the rotor currents, which represents in the reducing of total harmonics distortion of the rotor currents and equal, to 3.82 and 3.54, resulting from the application of the integral sliding mode controller with sign function and with super-twisting algorithm respectively.

Suggested Citation

  • F. Z. Tria & K. Srairi & M. T. Benchouia & M. E. H. Benbouzid, 2017. "An integral sliding mode controller with super-twisting algorithm for direct power control of wind generator based on a doubly fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(4), pages 762-769, December.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-017-0597-5
    DOI: 10.1007/s13198-017-0597-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0597-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0597-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Djurovic, M. & Joksimovic, G., 1996. "Optimal performance of double fed induction generator in windmills," Renewable Energy, Elsevier, vol. 9(1), pages 862-865.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meryem Benakcha & Leila Benalia & Abdelkrim Ammar & Amor Bourek, 2019. "Wind energy conversion system based on dual stator induction generator controlled by nonlinear backstepping and pi controllers," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(4), pages 499-509, August.
    2. Daniel A. Magallón & Carlos E. Castañeda & Francisco Jurado & Onofre A. Morfin, 2021. "Design of a Neural Super-Twisting Controller to Emulate a Flywheel Energy Storage System," Energies, MDPI, vol. 14(19), pages 1-23, October.
    3. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 0. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    4. Mojtaba Nasiri & Saleh Mobayen & Quan Min Zhu, 2019. "Super-Twisting Sliding Mode Control for Gearless PMSG-Based Wind Turbine," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    5. W. Slimane & M. T. Benchouia & A. Golea & S. Drid, 2020. "Second order sliding mode maximum power point tracking of wind turbine systems based on double fed induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 716-727, June.
    6. Mousavi, Yashar & Bevan, Geraint & Kucukdemiral, Ibrahim Beklan & Fekih, Afef, 2022. "Sliding mode control of wind energy conversion systems: Trends and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:4:d:10.1007_s13198-017-0597-5. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.