IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-017-0618-4.html
   My bibliography  Save this article

Software maintainability prediction using hybrid neural network and fuzzy logic approach with parallel computing concept

Author

Listed:
  • Lov Kumar

    (National Institute of Technology)

  • Santanu Ku Rath

    (National Institute of Technology)

Abstract

In present day scenario, majority of software companies use object-oriented concept to develop software systems as it enables effective design, development, testing and maintenance, in addition to the optimal characterization of the software system. With the increase in number of these software systems, their effective maintenance aspect becomes very important day by day. In this study, Neuro-Fuzzy approach: hybrid neural network and fuzzy logic approach has been considered to develop a maintainability model using ten different object-oriented static source code metrics as input. This method is applied on maintainability data of two commercial software products such as UIMS and QUES. Rough set analysis (RSA) and principal component analysis (PCA) are used to select suitable set of metrics from the ten metrics employed to improve performance of maintainability prediction model. From experimental results, it is observed that Neuro-Fuzzy model can effectively predict the maintainability of object-oriented software systems. After implementing parallel computing concept, it is observed that the training time gets reduced to a significant amount when the number of computing nodes were increased. Further it is observed that selected subset of metrics using feature selection techniques i.e., PCA, and RSA was able to predict maintainability with higher accuracy.

Suggested Citation

  • Lov Kumar & Santanu Ku Rath, 2017. "Software maintainability prediction using hybrid neural network and fuzzy logic approach with parallel computing concept," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1487-1502, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0618-4
    DOI: 10.1007/s13198-017-0618-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-017-0618-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-017-0618-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-017-0618-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.