IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-016-0539-7.html
   My bibliography  Save this article

Constrained Laplacian biogeography-based optimization algorithm

Author

Listed:
  • Vanita Garg

    (Indian Institute of Technology)

  • Kusum Deep

    (Indian Institute of Technology)

Abstract

Biogeography-based optimization (BBO) is a relatively new nature inspired optimization technique proposed by Dan Simon for unconstrained optimization, which was later generalized and improved by Happing Ma and Dan Simon for constrained optimization, called blended biogeography-based optimization. In an earlier paper, the authors have proposed a Laplacian biogeography-based optimization algorithm (LX-BBO) for unconstrained optimization. The purpose of the present paper is to generalize the LX-BBO from the unconstrained case to the constrained case. This is done by using the Deb’s constrained handling method. In order to evaluate the performance of the proposed constrained LX-BBO for constrained optimization problems, five different constrained optimization problems and popular CEC 2006 benchmark collection is used. Based on the analysis of results it is shown that the proposed Constrained LX-BBO outperforms Blended BBO for constrained optimization.

Suggested Citation

  • Vanita Garg & Kusum Deep, 2017. "Constrained Laplacian biogeography-based optimization algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 867-885, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0539-7
    DOI: 10.1007/s13198-016-0539-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0539-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0539-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.
    2. Eryang Guo & Yuelin Gao & Chenyang Hu & Jiaojiao Zhang, 2023. "A Hybrid PSO-DE Intelligent Algorithm for Solving Constrained Optimization Problems Based on Feasibility Rules," Mathematics, MDPI, vol. 11(3), pages 1-34, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0539-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.