IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v8y2017i2d10.1007_s13198-016-0481-8.html
   My bibliography  Save this article

A framework for maintenance and combat readiness management of a jet fighter aircraft

Author

Listed:
  • Panagiotis Tsarouhas

    (Technological Educational Institute of Central Macedonia)

  • Maria Makrygianni

    (Hellenic Airforce, Ministry of Defence)

Abstract

The study is focused on the application of maintainability analysis in a jet fighter aircraft in order to point out weaknesses of maintenance operations. Descriptive statistics of the repair data were carried out and both maintainability and repair rate modes for the entire aircraft were calculated. Maintainability for different time periods for aircraft’s principal subsystems has been estimated on the basis of fitted distribution models. Quality function deployment (QFD) method was applied to link customer requirements and maintenance characteristics in military squadron, revealing the relationship among the prevailing factors affecting maintenance operations. The QFD is proposed as a quality planning methodology to reduce aircraft repair time increasing at the same time squadron’s combat readiness. The highest maintainabilities were associated with the engine, the communication/navigation and the fuel subsystems, whereas the airplane general, the flight control and the structure subsystems bottomed out in maintainability performance. Furthermore, top management involvement, resources availability, maintenance procedures, maintenance planning as well as technical experience were the main factors responsible for the current maintainability level of this aircraft. The paper is based on practical actions being undertaken in an Airforce and therefore, is demonstrated to be practical in an aviation environment. This study may be used for long‐term, strategic assessment and planning decisions in order to sustain unit availability and overall air force combat readiness at a high level.

Suggested Citation

  • Panagiotis Tsarouhas & Maria Makrygianni, 2017. "A framework for maintenance and combat readiness management of a jet fighter aircraft," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1895-1909, November.
  • Handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0481-8
    DOI: 10.1007/s13198-016-0481-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-016-0481-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-016-0481-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rajpal, P.S. & Shishodia, K.S. & Sekhon, G.S., 2006. "An artificial neural network for modeling reliability, availability and maintainability of a repairable system," Reliability Engineering and System Safety, Elsevier, vol. 91(7), pages 809-819.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin, Md. Tanjin & Khan, Faisal & Imtiaz, Syed, 2018. "Dynamic availability assessment of safety critical systems using a dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 108-117.
    2. Santhosh, T.V. & Gopika, V. & Ghosh, A.K. & Fernandes, B.G., 2018. "An approach for reliability prediction of instrumentation & control cables by artificial neural networks and Weibull theory for probabilistic safety assessment of NPPs," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 31-44.
    3. Guikema, Seth D., 2009. "Natural disaster risk analysis for critical infrastructure systems: An approach based on statistical learning theory," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 855-860.
    4. Yaqun, Qi & Ping, Jin & Ruizhi, Li & Sheng, Zhang & Guobiao, Cai, 2020. "Dynamic reliability analysis for the reusable thrust chamber: A multi-failure modes investigation based on coupled thermal-structural analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Oszczypała, Mateusz & Konwerski, Jakub & Ziółkowski, Jarosław & Małachowski, Jerzy, 2024. "Reliability analysis and redundancy optimization of k-out-of-n systems with random variable k using continuous time Markov chain and Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:8:y:2017:i:2:d:10.1007_s13198-016-0481-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.