IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i3d10.1007_s13198-025-02713-8.html
   My bibliography  Save this article

Combining transfer and ensemble learning models for image and text aspect-based sentiment analysis

Author

Listed:
  • Amit Chauhan

    (Jaypee University of Information Technology (JUIT))

  • Rajni Mohana

    (Jaypee University of Information Technology (JUIT)
    Amity University Punjab)

Abstract

Multimodal Aspect-Based Sentiment Analysis (MABSA) is a rapidly evolving field, essential for understanding emotions across different data types like text and images. By analyzing sentiments from multiple sources, MABSA holds great potential for diverse real-world applications such as social media monitoring and customer feedback analysis. This study introduces a novel approach that leverages both machine learning and deep learning techniques to improve sentiment interpretation at a fine-grained level, enabling more precise emotional insights from multimodal data. Our approach integrates a Light Gradient Boosting Machine with advanced models, including Transformer-XL Network (XLNet), Bidirectional Encoder Representations from Transformers (BERT), and its optimized variant, RoBERTa. This hybrid model significantly enhances the accuracy and robustness of aspect-based sentiment analysis. Evaluations on the Twitter 2015 dataset achieved an accuracy of 80.52% and an F1-measure of 76.42%. Further testing on the Twitter 2017 dataset resulted in an accuracy of 73.85% and an F1-measure of 72.68%. These results demonstrate the effectiveness of our method, highlighting its potential for more comprehensive sentiment analysis across multiple modalities.

Suggested Citation

  • Amit Chauhan & Rajni Mohana, 2025. "Combining transfer and ensemble learning models for image and text aspect-based sentiment analysis," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(3), pages 1001-1019, March.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:3:d:10.1007_s13198-025-02713-8
    DOI: 10.1007/s13198-025-02713-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-025-02713-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-025-02713-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:3:d:10.1007_s13198-025-02713-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.