IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v16y2025i2d10.1007_s13198-024-02639-7.html
   My bibliography  Save this article

Determination of optimum refactoring sequence for maximizing the maintainability of object-oriented systems using machine learning algorithms

Author

Listed:
  • Sandhya Tarwani

    (Vivekananda Institute of Professional Studies - Technical Campus)

  • Anuradha Chug

    (Guru Gobind Singh Indraprastha University)

Abstract

Refactoring is a technique for changing internal attributes without affecting external ones in an optimized manner. Bad smells in the source code can cause various issues, increasing the need for refactoring. In this study, prioritization of classes is initially performed using a newly proposed metric called the Quality Decline Factor (QDF), which considers an appropriate ratio of software metrics along with eleven detected types of bad smells. Next, these bad smells are addressed by applying refactoring techniques, and changes in the metrics are observed. Subsequently, machine learning algorithms are used to assign weights to each metric, leading to the proposal of another new metric, the Total Refactoring Index (TRI). TRI combines the assigned weights and the effects of metric changes to determine the optimal refactoring sequence. The results indicate that the Decision Tree Forest algorithm is the most suitable for determining the refactoring sequence. After applying this technique, a 94.9% reduction in effort was observed. This study would benefit software maintainers by providing predefined sequences, allowing them to focus only on the code sections with the highest concentration of bad smells, thus completing projects within real-time constraints.

Suggested Citation

  • Sandhya Tarwani & Anuradha Chug, 2025. "Determination of optimum refactoring sequence for maximizing the maintainability of object-oriented systems using machine learning algorithms," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 16(2), pages 651-666, February.
  • Handle: RePEc:spr:ijsaem:v:16:y:2025:i:2:d:10.1007_s13198-024-02639-7
    DOI: 10.1007/s13198-024-02639-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02639-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02639-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:16:y:2025:i:2:d:10.1007_s13198-024-02639-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.