IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02409-5.html
   My bibliography  Save this article

Comparative assessment of the performance of a 20kWp solar photo-voltaic array across five diversified regions of Eastern India

Author

Listed:
  • Dipankar Pramanick

    (SRM Institute of Science and Technology)

  • Jitendra Kumar

    (SRM Institute of Science and Technology)

Abstract

Ensuring a reliable and uninterrupted power supply poses a significant and contemporary challenge for many countries. To address this foremost issue, the utilization of solar photovoltaic power generation emerges as an efficient and viable solution. This approach not only eliminates the escalating energy demand but also provides eco-friendly sustainable power to the consumers. In light of this context, the paper presents a technical methodology for assessing the performance of solar PV systems within varying climatic conditions across five distinct locations in the West Bengal province of eastern India, namely, Siliguri, Malda, Berhampore, Krishnanagar and Durgapur. Various performance indices such as yield outcomes, losses, performance ratio (PR) and capacity factor (CF) of solar PV array, have been evaluated for the specified regions using resource management and HOMER pro software. The acquired findings indicate that the annual average final yield, reference yield, array yield, system loss and array capture loss of solar PV array across five different locations lie within the range of (2.69–4.03) h/d, (4.83–5.20) h/d, (2.83 -4.24) h/d, (0.14–0.21) h/d, and (0.96–2.01) h/d, respectively. Aligning with these outcomes, it can be inferred that Krishnanagar emerges as the optimal site for solar PV deployment, with a performance ratio (PR) of 77.5% and a capacity factor (CF) of 16.7%.

Suggested Citation

  • Dipankar Pramanick & Jitendra Kumar, 2024. "Comparative assessment of the performance of a 20kWp solar photo-voltaic array across five diversified regions of Eastern India," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 4032-4049, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02409-5
    DOI: 10.1007/s13198-024-02409-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02409-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02409-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietruszko, S. M. & Gradzki, M., 2003. "Performance of a grid connected small PV system in Poland," Applied Energy, Elsevier, vol. 74(1-2), pages 177-184, January.
    2. Mpholo, Moeketsi & Nchaba, Teboho & Monese, Molebatsi, 2015. "Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho," Renewable Energy, Elsevier, vol. 81(C), pages 845-852.
    3. Salameh, Tareq & Ghenai, Chaouki & Merabet, Adel & Alkasrawi, Malek, 2020. "Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates," Energy, Elsevier, vol. 190(C).
    4. Salehin, Sayedus & Ferdaous, M. Tanvirul & Chowdhury, Ridhwan M. & Shithi, Sumaia Shahid & Rofi, M.S.R. Bhuiyan & Mohammed, Mahir Asif, 2016. "Assessment of renewable energy systems combining techno-economic optimization with energy scenario analysis," Energy, Elsevier, vol. 112(C), pages 729-741.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Le Phuong Truong & Hoang An Quoc & Huan-Liang Tsai & Do Van Dung, 2020. "A Method to Estimate and Analyze the Performance of a Grid-Connected Photovoltaic Power Plant," Energies, MDPI, vol. 13(10), pages 1-17, May.
    2. Bouaichi, Abdellatif & El Amrani, Aumeur & Ouhadou, Malika & Lfakir, Aberrazak & Messaoudi, Choukri, 2020. "In-situ performance and degradation of three different photovoltaic module technologies installed in arid climate of Morocco," Energy, Elsevier, vol. 190(C).
    3. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    4. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    5. Kumar, Pankaj & Pal, Nitai & Sharma, Himanshu, 2022. "Optimization and techno-economic analysis of a solar photo-voltaic/biomass/diesel/battery hybrid off-grid power generation system for rural remote electrification in eastern India," Energy, Elsevier, vol. 247(C).
    6. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    8. Humberto Vidal & Marco Rivera & Patrick Wheeler & Nicolás Vicencio, 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    9. Ephraim Bonah Agyekum & Usman Mehmood & Salah Kamel & Mokhtar Shouran & Elmazeg Elgamli & Tomiwa Sunday Adebayo, 2022. "Technical Performance Prediction and Employment Potential of Solar PV Systems in Cold Countries," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    10. Syed Zahurul Islam & Mohammad Lutfi Othman & Muhammad Saufi & Rosli Omar & Arash Toudeshki & Syed Zahidul Islam, 2020. "Photovoltaic modules evaluation and dry-season energy yield prediction model for NEM in Malaysia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-25, November.
    11. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    12. Sami Florent Palm & Lamkharbach Youssef & Sebastian Waita & Thomas Nyachoti Nyangonda & Khalid Radouane & Ahmed Chebak, 2023. "Performance Evaluation of Burkina Faso’s 33 MW Largest Grid-Connected PV Power Plant," Energies, MDPI, vol. 16(17), pages 1-20, August.
    13. Agata Zdyb & Slawomir Gulkowski, 2020. "Performance Assessment of Four Different Photovoltaic Technologies in Poland," Energies, MDPI, vol. 13(1), pages 1-17, January.
    14. Akbar Maleki & Zahra Eskandar Filabi & Mohammad Alhuyi Nazari, 2022. "Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    15. Esraa M. Abd Elsadek & Hossam Kotb & Ayman Samy Abdel-Khalik & Yasser Aboelmagd & Aly. H. Abdelbaky Elbatran, 2024. "Experimental and Techno-Economic Analysis of Solar PV System for Sustainable Building and Greenhouse Gas Emission Mitigation in Harsh Climate: A Case Study of Aswan Educational Building," Sustainability, MDPI, vol. 16(13), pages 1-31, June.
    16. Mpholo, Moeketsi & Nchaba, Teboho & Monese, Molebatsi, 2015. "Yield and performance analysis of the first grid-connected solar farm at Moshoeshoe I International Airport, Lesotho," Renewable Energy, Elsevier, vol. 81(C), pages 845-852.
    17. Kumar, Manish & Chandel, S.S. & Kumar, Arun, 2020. "Performance analysis of a 10 MWp utility scale grid-connected canal-top photovoltaic power plant under Indian climatic conditions," Energy, Elsevier, vol. 204(C).
    18. Emad Abdelsalam & Hamza Alnawafah & Fares Almomani & Aya Mousa & Hasan Qandil, 2023. "Enhancing the Efficiency of Bi-Facial Photovoltaic Panels: An Integration Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    19. Elibol, Erdem & Özmen, Özge Tüzün & Tutkun, Nedim & Köysal, Oğuz, 2017. "Outdoor performance analysis of different PV panel types," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 651-661.
    20. Mendoza-Vizcaino, Javier & Raza, Muhammad & Sumper, Andreas & Díaz-González, Francisco & Galceran-Arellano, Samuel, 2019. "Integral approach to energy planning and electric grid assessment in a renewable energy technology integration for a 50/50 target applied to a small island," Applied Energy, Elsevier, vol. 233, pages 524-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02409-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.