IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-024-02392-x.html
   My bibliography  Save this article

Brain tumor image segmentation using model average ensembling of deep networks

Author

Listed:
  • Ajey Shakti Mishra

    (Galgotias College of Engineering and Technology)

  • Upendra Kumar Acharya

    (Galgotias College of Engineering and Technology
    KIET Group of Institutions
    GLA University)

  • Akanksha Srivastava

    (Galgotias College of Engineering and Technology)

  • Aashi Rohit Modi

    (Galgotias College of Engineering and Technology)

  • Sandeep Kumar

    (National Institute of Technology)

Abstract

In the biomedical field, identification of brain tumors along with their location, regions of spreading, and speed of extension are of utmost importance to decide the treatment for Brain Tumors. Automated segmentation plays a major role in detection because manual extraction of the brain tumor sub-regions from MRI volume is monotonous, error-prone, and intricate. Deep learning significantly contributed to outperforming these issues since it is aware of their complexity. Therefore, a technique for the automated segmentation of MRI brain pictures has been developed using model average ensembling of deep networks such 3D CNN and U-Net architectures. 3D CNN and U-Net architecture have made remarkable progress on the task of segmentation of brain tumors. Due to their reliability, ensembling of these models have been opted to have a model with greater reliability. The novelty of this paper is to build a robust segmentation technique by model average ensembling of 3D CNN and U-Net models for abnormality identification by improving the image quality using preprocessing methods. The model includes the testing set BraTS-19 as its input dataset. After performing a lot of experiments, it has been observed that the obtained dice scores by the proposed model for TC (Tumor Core), WT (Whole Tumor), and ET (Enhancing Tumor) are 0.9603, 0.9201, and 0.9237 respectively. The obtained dice scores from the ensembling technique are better than existing techniques. The demonstrated results show the supremacy of the proposed method with an overall accuracy greater than 96%.

Suggested Citation

  • Ajey Shakti Mishra & Upendra Kumar Acharya & Akanksha Srivastava & Aashi Rohit Modi & Sandeep Kumar, 2024. "Brain tumor image segmentation using model average ensembling of deep networks," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3915-3925, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02392-x
    DOI: 10.1007/s13198-024-02392-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02392-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02392-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Meghdadi & H. Niroomand-Oscuii & M. Soltani & F. Ghalichi & M. Pourgolmohammad, 2017. "Brain tumor growth simulation: model validation through uncertainty quantification," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 655-662, September.
    2. Madhulika Bhatia & Abhay Bansal & Divakar Yadav, 2017. "A proposed quantitative approach to classify brain MRI," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 577-584, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arezoo Amirpourabasi & Mohammad Pourgol-Mohammad & Hanieh Niroomand-Oscuii, 2017. "Reliability Evaluation for Biomedical Systems: Case Study of a Biological Cell Freezing," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 6(3), pages 45-52, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-024-02392-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.