IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i8d10.1007_s13198-023-02022-y.html
   My bibliography  Save this article

Reliability evaluation of a programmable logic controller based system

Author

Listed:
  • Mangey Ram

    (Graphic Era Deemed to be University)

  • Subhi Tyagi

    (Chandigarh University)

  • Akshay Kumar

    (Graphic Era Hill University)

Abstract

This research proposes a Programmable Logic Controller (PLC) based system that make black salt. In this system, there exists funnels where the salt is supposed to heat up for few hours and gets converted into black salt afterwards. With every funnel, two burners are connected in parallel with different level of intensity. Then there are also temperature sensors in the funnel to sense the temperature and help PLC to maintain a given range of temperature in the funnel. Both burner and sensor are considered to have multi-state with various performance level, from complete failure to perfectly working and both are connected to each other in series. Set of burners and sensors in a funnel together form one subsystem where the system as a whole is considered a k-out-of-n:G type. So, out of n funnels, k are supposed to work at a time, and if there will be any failure in any subsystem the PLC will automatically starts another subsystem to function. The elements are considered to be repairable, and reliability of the proposed system is computed from universal generating function technique. Also, numerical examples are presented to illustrate the model by taking different functioning conditions and the proposed algorithm.

Suggested Citation

  • Mangey Ram & Subhi Tyagi & Akshay Kumar, 2024. "Reliability evaluation of a programmable logic controller based system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3620-3628, August.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-023-02022-y
    DOI: 10.1007/s13198-023-02022-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02022-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02022-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, July.
    2. Bairamov, Ismihan & Arnold, Barry C., 2008. "On the residual lifelengths of the remaining components in an n-k+1 out of n system," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 945-952, June.
    3. Rui Peng, 2019. "Optimal component allocation in a multi-state system with hierarchical performance sharing groups," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(4), pages 581-587, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Congshan & Zhao, Xian & Wang, Xiaoyue & Wang, Siqi, 2021. "Reliability analysis of performance-based balanced systems with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Vladimir Rykov & Nika Ivanova & Dmitry Kozyrev & Tatyana Milovanova, 2022. "On Reliability Function of a k -out-of- n System with Decreasing Residual Lifetime of Surviving Components after Their Failures," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    3. Gu, Liudong & Wang, Guanjun & Zhou, Yifan & Peng, Rui, 2024. "Reliability optimization of multi-state systems with two performance sharing groups," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Hui Xiao & Minhao Cao & Gang Kou & Xiaojun Yuan, 2021. "Optimal element allocation and sequencing of multi-state series systems with two levels of performance sharing," Journal of Risk and Reliability, , vol. 235(2), pages 282-292, April.
    5. Sadiya & Mangey Ram & Akshay Kumar, 2022. "A New Approach to Compute System Reliability with Three-Serially Linked Modules," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    6. Wu, Di & Chi, Yuanying & Peng, Rui & Sun, Mengyao, 2019. "Reliability of capacitated systems with performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 335-344.
    7. Su, Peng & Wang, Guanjun & Duan, Fengjun, 2020. "Reliability evaluation of a k-out-of-n(G)-subsystem based multi-state system with common bus performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    8. Xiao, Hui & Zhang, Yiyun & Xiang, Yisha & Peng, Rui, 2020. "Optimal design of a linear sliding window system with consideration of performance sharing," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Yeh, Wei-Chang, 2020. "A new method for verifying d-MC candidates," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Kondakci, Suleyman, 2015. "Analysis of information security reliability: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 275-299.
    11. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    12. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Tian, Tianzi & Yang, Jun & Li, Lei & Wang, Ning, 2023. "Reliability assessment of performance-based balanced systems with rebalancing mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. EryIlmaz, Serkan, 2010. "On system reliability in stress-strength setup," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 834-839, May.
    15. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    17. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    18. Yeh, Wei-Chang, 2022. "Novel direct algorithm for computing simultaneous all-level reliability of multistate flow networks," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Chao-Hui Huang & Chun-Ho Wang, 2016. "Optimization of preventive maintenance for a multi-state degraded system by monitoring component performance," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1151-1170, December.
    20. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:8:d:10.1007_s13198-023-02022-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.