IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i10d10.1007_s13198-024-02495-5.html
   My bibliography  Save this article

Hybrid explainable image caption generation using image processing and natural language processing

Author

Listed:
  • Atul Mishra

    (BML Munjal University)

  • Anubhav Agrawal

    (BML Munjal University)

  • Shailendra Bhasker

    (Harcourt Butler Technical University)

Abstract

Image caption generation is among the most rapidly growing research areas that combine image processing methodologies with natural language processing (NLP) technique(s). The effectiveness of the combination of image processing and NLP techniques can revolutionaries the areas of content creation, media analysis, and accessibility. The study proposed a novel model to generate automatic image captions by consuming visual and linguistic features. Visual image features are extracted by applying Convolutional Neural Network and linguistic features by Long Short-Term Memory (LSTM) to generate text. Microsoft Common Objects in Context dataset with over 330,000 images having corresponding captions is used to train the proposed model. A comprehensive evaluation of various models, including VGGNet + LSTM, ResNet + LSTM, GoogleNet + LSTM, VGGNet + RNN, AlexNet + RNN, and AlexNet + LSTM, was conducted based on different batch sizes and learning rates. The assessment was performed using metrics such as BLEU-2 Score, METEOR Score, ROUGE-L Score, and CIDEr. The proposed method demonstrated competitive performance, suggesting its potential for further exploration and refinement. These findings underscore the importance of careful parameter tuning and model selection in image captioning tasks.

Suggested Citation

  • Atul Mishra & Anubhav Agrawal & Shailendra Bhasker, 2024. "Hybrid explainable image caption generation using image processing and natural language processing," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4874-4884, October.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02495-5
    DOI: 10.1007/s13198-024-02495-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02495-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02495-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    NLP; Image caption generation; CNN; LSTM; InceptionV3;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02495-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.