IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v15y2024i10d10.1007_s13198-024-02362-3.html
   My bibliography  Save this article

An enhanced control strategy for photovoltaic system control based on sliding mode-PI regulator

Author

Listed:
  • Adel Bouchahed

    (Institut des Sciences et des Techniques Appliquées
    Université Constantine 1, Frères Mentouri
    Laboratoire satellites intelligence artificielle cryptographie et internet des objets)

  • Abdelfettah Boussaid

    (Institut des Sciences et des Techniques Appliquées
    Laboratoire d’électrotechnique de Constantine
    Université Constantine 1, Frères Mentouri)

  • Fatah Mekhloufi

    (Institut des Sciences et des Techniques Appliquées
    Université Constantine 1, Frères Mentouri
    Laboratoire satellites intelligence artificielle cryptographie et internet des objets)

  • Ahmed Belhani

    (Université Constantine 1, Frères Mentouri
    Laboratoire satellites intelligence artificielle cryptographie et internet des objets)

  • Ali Belhamra

    (Université Badji Mokhtar Annaba 1)

Abstract

This article presents a modeling study and a control approach of photovoltaic system to provide continuous electrical energy at its output and feds a DC–DC booster converter. The last mentioned converter also provides a variable DC voltage applied directly across the terminals of a resistive load. In order to ensure a high static performance control for the different characteristics of the photovoltaic system. This study deals with three control strategies for the DC–DC boost converter; the first one is based on the maximum power point tracking (MPPT). Secondly, the authors move to the control technique based on proportional-integral (PI) regulator. At the end, a combination between the sliding mode strategies with the PI regulator is presented and discussed. The main purpose of these strategies is to obtain the best characteristics of the photovoltaic system so that it operates around the maximum power point with less oscillation, overtaking as well as a high stability for the different PV’s system characteristics when the solar irradiance changes. The obtained results show the effectiveness of the proposed algorithm in controlling the Photovoltaic system under different conditions in comparison to other strategies.The PV system is associated to the DC–DC boost converter where it is subjected to a variable irradiance between [200 and 1000] $$\text{w}\ /\text{m}^2$$ w / m 2 and a constant temperature equal to 250 C, The DC voltage $$V_{dc}$$ V dc characteristics and the currents $$I_{dc}$$ I dc are obtained with a sampling time $$T_{e} = 0.1$$ T e = 0.1 s and a simulation time $$T_{s} = 0.5$$ T s = 0.5 s. The hybrid $$P \& O-MPPT$$ P & O - M P P T $$SMC-PI$$ S M C - P I control technique gives better results than the two other strategies in terms of stability.

Suggested Citation

  • Adel Bouchahed & Abdelfettah Boussaid & Fatah Mekhloufi & Ahmed Belhani & Ali Belhamra, 2024. "An enhanced control strategy for photovoltaic system control based on sliding mode-PI regulator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4658-4667, October.
  • Handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02362-3
    DOI: 10.1007/s13198-024-02362-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-024-02362-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-024-02362-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahteshamul Haque & Zaheeruddin, 2017. "A fast and reliable perturb and observe maximum power point tracker for solar PV system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 773-787, November.
    2. Aatabe, Mohamed & El Guezar, Fatima & Vargas, Alessandro N. & Bouzahir, Hassane, 2021. "A novel stochastic maximum power point tracking control for off-grid standalone photovoltaic systems with unpredictable load demand," Energy, Elsevier, vol. 235(C).
    3. Sivaraj Panneerselvam & Baskar Srinivasan, 2022. "Switching loss analysis of IGBT and MOSFET in single phase PWM inverter fed from photovoltaic energy sources for smart cities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 718-726, March.
    4. Richa Sharma & Purushottam Sharma & Deepak Nagaria & Abhishek Srivastava, 2022. "Active control of ripple energy in single-phase pulse width modulated rectifier," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 713-720, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    2. Masmoudi, Abdelkarim & Abdelkafi, Achraf & Krichen, Lotfi & Saidi, Abdelaziz Salah, 2022. "An experimental approach for improving stability in DC bus voltage of a stand-alone photovoltaic generator," Energy, Elsevier, vol. 257(C).
    3. Sudhanshu Ranjan & D. C. Das & A. Latif & N. Sinha, 2021. "Electric vehicles to renewable-three unequal areas-hybrid microgrid to contain system frequency using mine blast algorithm based control strategy," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 961-975, October.
    4. Sampath Kumar Vankadara & Shamik Chatterjee & Praveen Kumar Balachandran, 2022. "An accurate analytical modeling of solar photovoltaic system considering Rs and Rsh under partial shaded condition," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2472-2481, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:15:y:2024:i:10:d:10.1007_s13198-024-02362-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.