IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i6d10.1007_s13198-023-02161-2.html
   My bibliography  Save this article

A comparative analysis of genetic algorithms on a case study of asymmetric traveling salesman problem

Author

Listed:
  • Amit Raj

    (Central University of Haryana)

  • Parul Punia

    (Central University of Haryana)

  • Pawan Kumar

    (Central University of Haryana)

Abstract

In the present paper, the genetic algorithm and some of its variants i.e. adaptive genetic algorithm, binary-coded genetic algorithm and real-coded genetic algorithm are applied to the Asymmetric Traveling Salesman Problem (ATSP). ATSP is one of the most widely studied combinatorial NP-hard problems of finding the shortest path. The present ATSP is a novel real-life case of the shortest path problem based on the distances between 22 districts of Haryana, India. To solve the above problem, one-point crossover and exchange mutation are applied to compare the performance of these algorithms on different parameters such as the size of the population, the number of iterations, and the rate of crossover. The main objective of this paper is to study the influence of these parameters on ATSP. Numerical results show that the binary genetic algorithm worked better in terms of the size of the population and the number of iterations, while the real-coded genetic algorithm worked better in terms of the rate of crossover. Graphical abstract

Suggested Citation

  • Amit Raj & Parul Punia & Pawan Kumar, 2023. "A comparative analysis of genetic algorithms on a case study of asymmetric traveling salesman problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(6), pages 2684-2694, December.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02161-2
    DOI: 10.1007/s13198-023-02161-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-02161-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-02161-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:6:d:10.1007_s13198-023-02161-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.