IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i4d10.1007_s13198-023-01945-w.html
   My bibliography  Save this article

Deep learning based efficient emotion recognition technique for facial images

Author

Listed:
  • Naveen Kumari

    (Punjabi University)

  • Rekha Bhatia

    (Punjabi University)

Abstract

Facial Emotion/Expression Recognition (FER) is the key technology which is responsible for analyzing facial emotions from digital images in order to reveal information on the emotional state of a person. It is one of the trending research areas in human computer interaction (HCI). This paper is supposed to provide a recent outlook in this arena by combining saliency map and deep learning approaches. As the usage of deep learning-based approaches in computer vision has revolutionized the way such problems are addressed, deep networks like convolutional neural networks (ConvNet) have become the standard design for image recognition problems. The learning through ConvNet needs a large number of images. Apart from the features of interest, most of the time these image data also carry a bunch of nonessential things, which add to the noise in our dataset. Saliency Maps accomplish this task of fixing critical pixels while ignoring the remaining image background. The present paper divides the whole process of FER into three steps: in the first step, image saliency is detected using a saliency map to focus on important regions of interest from the input dataset. In the second step, data augmentation is applied to balance all the emotion images datasets used in testing. In the third step, a deep convolutional neural network is trained using a modified adaptive moment estimation optimizer (M-Adam) to recognize the facial emotions. After this, the proposed technique is tested on the Japanese female facial expression (JAFFE), the extended Cohn-Kanade (CK+), and the face expression recognition plus dataset (FER+) benchmark datasets. The maximum accuracies achieved with the proposed technique are 97%, 99.8%, and 82.7% for the JAFFE, CK+, and FER + datasets, respectively.

Suggested Citation

  • Naveen Kumari & Rekha Bhatia, 2023. "Deep learning based efficient emotion recognition technique for facial images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1421-1436, August.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01945-w
    DOI: 10.1007/s13198-023-01945-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-023-01945-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-023-01945-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shelley Gupta & Archana Singh & Jayanthi Ranjan, 2023. "Multimodal, multiview and multitasking depression detection framework endorsed with auxiliary sentiment polarity and emotion detection," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 337-352, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Sasithradevi & Ravi Teja Challa & Siva Saketh & Saketh Chakka & D. Arumuga Perumal & P. Prakash, 2024. "Deep dual domain joint discriminant feature framework for emotion based music player," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(8), pages 3854-3868, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:4:d:10.1007_s13198-023-01945-w. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.