IDEAS home Printed from https://ideas.repec.org/a/spr/ijsaem/v14y2023i1d10.1007_s13198-020-01039-x.html
   My bibliography  Save this article

Bearing faults classification based on wavelet transform and artificial neural network

Author

Listed:
  • Widad Laala

    (Université de Biskra)

  • Asma Guedidi

    (Université de Biskra)

  • Abderrazak Guettaf

    (Université de Biskra)

Abstract

The most common types of induction rotating machine failures are the mechanical faults induced by misalignment, mechanical imbalance and bearing fault. It is well known that the vibration is the best and the earliest indicator of arising mechanical defect. Thus, this paper presents a novel practical bearing fault diagnosis method based on wavelet package decomposition (WPD) associated with neural network. Firstly, the raw signal is segmented by the use of WPD to a set of sub-signals (coefficients futures). Then, the energy related to the most sensible coefficients that contained the greatest dominant fault information is selected as a distinctive feature fault. The analysis results show that this fault indicator varies under different loads and states (healthy or defective). In order to automate the detection and the location of bearing defect, this feature can be used as an input to the artificial neural network. The proposed approach is capable of discriminating faults from four conditions of rolling bearing, the healthy bearing and the three different types of defected bearings: outer race, inner race, and ball. The experimental results prove the effectiveness of this approach.

Suggested Citation

  • Widad Laala & Asma Guedidi & Abderrazak Guettaf, 2023. "Bearing faults classification based on wavelet transform and artificial neural network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 37-44, February.
  • Handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-020-01039-x
    DOI: 10.1007/s13198-020-01039-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13198-020-01039-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13198-020-01039-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:ijsaem:v:14:y:2023:i:1:d:10.1007_s13198-020-01039-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.